Коэффициент прочности продольного сварного шва

Содержание

Расчет на прочность сварных соединений

Коэффициент прочности продольного сварного шва

В конструкциях из металла зачастую необходимо соединить между собой отдельные детали, для того чтобы это осуществить прибегают к использованию сварных швов. Это один из самых простых и недорогих способов, отличающийся высоким качеством.

Параметры у каждого сварного соединения разные, все зависит от используемого металла, его толщины и т.д. Поэтому в каждом отдельном случае необходимо произвести индивидуальный расчет на прочность сварных соединений.

Эти вычисления помогут выявить характеристики сварного шва на данный момент.

Общие сведения

Как уже отмечалось, сварные швы являются одними из самых прочных среди существующих неразъемных соединений. Они возникают в результате воздействия сил молекулярного сцепления, которое является результатом сильного нагрева до расплавления деталей в месте их сцепления или нагрева деталей до пластического состояния, посредством механического усилия.

Несмотря на прочность и надежность сварного шва, у подобного соединения выделяется и ряд недочетов: из-за того, что нагревается и охлаждается соединение неравномерно, может наблюдаться остаточное напряжение. Помимо этого, в процессе сварки могут образовываться некоторые дефекты, например, трещины или непровары. Все это негативно сказывается на прочности сварных соединений.

Первоначальный расчет сварных швов на прочность производят на этапе составления проекта. Этому моменту стоит уделить особое внимание, поскольку важно выбрать материалы, которые будут надежными и прочными и смогут выдержать определенные нагрузки.

Если произвести верный расчет на прочность получившегося шва, то можно определить необходимое количество расходуемого материала.

Расчет сварных швов на прочность

Для того, чтобы произвести расчет сварных соединений и вычислить коэффициент прочности сварного шва, надо произвести точный замер всех показателей (форма, размер, положение в пространстве).

Осуществить сварку можно разными способами. На сегодняшний день наибольшей популярностью пользуются следующие виды сварки:

  • электрическая, которая в свою очередь подразделяется на дуговую и контактную,
  • газовая.

Также выделяются: ручная, полуавтоматическая, автоматическая сварка.

Учитывая тот фактор, каким образом размещаются элементы, которые подвергаются сварке, выделяются такие типы соединений: стыковые, угловые, нахлесточные, тавровые.

Для каждого из вышеизложенных типов расчет на прочность проводится индивидуально.

Стыковые швы

Если необходимо высчитать коэффициент прочности сварного шва, в первую очередь, нужно обратить внимание на такой параметр как номинальное сечение, при этом учитывать утолщения швов, образуемых во время сварки не нужно. Вычисление производится исходя из данных о сопротивлении материалов, которые образуются в сплошных балках.

Когда касательные, нормальные напряжения начнут оказывать непосредственное влияние на соединения, то для расчета эквивалентного напряжения следует воспользоваться формулой:

Условие прочности можно представить следующим образом: σЭ ≤ [σ’]P

Для поиска данных этого параметра ниже представлена таблица.

Метод сварки Допускаемые напряжения
При растяжении [σ’]р При сжатии [σ’]еж При сдвиге[τ’]ср
Автоматическая, ручная электродами Э42А и Э50А [σ]р [σ]р 0,65 [σ]р
Ручная электродами обычного качества 0,9 [σ]р [σ]р 0,6 [σ]р
Контактная точечная 0,5 [σ]р

Угловые швы

Соединение угловых сварных швов чаще всего осуществляется с поперечным сечением. Оба края соотносятся друг к другу 1:1. Поскольку сторона сечения называется катет сварного шва, на всех схемах и формулах она имеет обозначение «К».

Зачастую шов деформируется и разрушается в самом маленьком месте сечения (опасное сечение), оно наиболее слабое, и проходит через биссектрису прямого угла. В таком сечении габариты (размер) шва определяются как β*К. Еще один важный показатель – длина шва (а).

С помощью этих показателей можно узнать какую нагрузку способен выдержать сварной шов.

Рассмотрим примеры

Если процесс сварки осуществлялся в автоматическом, полуавтоматическом или ручном режиме, то β будет равняться 0,7. Таким образом, получится шов в форме равнобедренного треугольника. В случае, когда процесс сварки происходил в полуавтоматическом режиме, но подход был не один, а несколько (2 или 3), то β уже будет равен 0,8; для такого же случая, но при автоматическом режиме β=0,9, а для автоматической однопроходной сварки — β=1,1. Требуется принимать К

Источник: https://svarkaed.ru/svarka/shvy-i-soedineniya/raschet-na-prochnost-svarnyh-soedinenij.html

Коэффициент прочности сварного шва

Коэффициент прочности продольного сварного шва

— характеризует прочность сварного швапо отношению к прочности основногосвариваемого металла.

— верхний предел (при автоматическойсварке)

(0,8…0,95) – при ручной сварке.

Латунь = медь + цинк.

Технологические прибавки к номинальной расчётной толщине стенки сосуда. Исполнительная толщина стенки сосуда, детали сборочной единицы

— номинальная расчётная толщина стенки,обусловленная прочностным расчётом,принятой расчётной схемой и выбраннымрасчётным алгоритмом.

https://www.youtube.com/watch?v=mlT5_n4j38U

При таком подходе остаётся неучтённымцелый ряд негативных факторов:

= Коррозионное воздействие (одностороннееили двухстороннее)

= Удаление стенки вследствие воздействияабразивных средств

= Возможное утонение стандартного листаза счёт минусового допуска

= Возможное утонение стенки прииспользовании деформативной технологииизготовления аппарата (вытяжка, штамповка,гибка).

— технологическая (конструктивная)прибавка.

— прибавка на коррозию и эрозию стенкиаппарата

П – проницаемость,

,

— прибавка на возможный минусовой допускк номинальной толщине листа.

Читайте также  Техника выполнения швов в нижнем положении

— прибавка на возможное удаление стенкидетали при использовании выше названныхдеформативных технологий.

Расчёт и конструирование тонкостенных осесимметричных изотропных оболочек вращения

— первый главный радиус кривизны в точкеМ (меридиальный радиус).

— второй главный радиус кривизны в точкеМ.

Лекция 4

r– радиус параллельногокруга

U– меридианальная сила

T– кольцевая сила

Q– поперечная перерезающаясила

В оболочке вращения кривизна меняетсявдоль меридианы (приращение ).В кольцевых направляющих кривизнапостоянна (приращение).

Все перечисленные внутренние силовыефакторы образуют моментное напряжённоесостояние выделенного бесконечно малогоэлемента оболочки.

Если методами моментной теории оболочекможно определить все внутренние силовыефакторы, то прочностной расчёт оболочкиведётся обычными методами, а именно:

;;;

На практике протяжённость краевых зонвесьма мала (порядка 2-3 толщин стенки).

В гладких участках тонкостенных оболочеквращения основную роль играют нормальныесилы в гранях выделенного элемента (и),образующие, так называемое, безмоментное(мембранное) напряжённое состояние.

Вгладких участках таких оболочек действияизгибающих моментов (и),поперечных перерезывающих силстановится пренебрежимо малым (имипренебрегают в расчёте гладких участковтаких оболочек). Нормальные силы (и)в этом случае образуют двумерноенапряжённое состояние.

Из ГОСТ:

Рассмотрим безмоментное напряжённоесостояние:

— внутренне избыточное давление (внешнийсиловой фактор)

Спроецируем все силы на ось действиясилы :

— для бесконечно малых углов

Так как ,то

— уравнение Лапласа (уравнение равновесиябесконечно малого элемента оболочки,находящейся под внутренним избыточнымдавлением).

Для нахождения недостающего уравнениясвязи между неизвестными напряжениями,получим уравнения равновесия конечнойзоны оболочки:

Так как ,,то

— уравнение равновесия конечной зоны

Вывод нормативных расчётных формул для прочностного расчёта основных типов тонкостенных оболочек вращения, образующих современные аппараты и машины

Цилиндрическая оболочка:

(в точке М)

Установим соотношение между главныминапряжениями и

,

,так как.

Полученный результат показывает, чтопри прочих равных условиях в 2 раза.Продольные швы нагруженыбольше всего!!!

Лекция 5

Для аппаратов, изготовленных из трубили аппаратов, изготовленных из листовыхобечаек диаметром менее или равным 400мм в качестве расчётного применяетсярасчётный диаметр. Для аппаратов,изготовленных из труб или аппаратов,изготовленных из листовых обечаекдиаметром более 400 мм в качестве расчётногоприменяется внутренний диаметр.

Преобразуем уравнение Лапласаприменительно к цилиндрической оболочке:

Так как ,,где- коэффициент прочности сварного шва,то, взяв за основуIIIтеориюпрочности (теорию пластичности), получим:

,

,где- коррозионная прибавка,S– полная исполнительная толщина стенки.

Сферическая оболочка:

Так как ,,то:

— в 2 раза меньше, чем для цилиндра.

Сферическая оболочка менее материалоёмка,чем цилиндрическая.

Эллиптические днища:

В – полюс (минимальная кривизна, опаснаяточка)

А – экватор (краевая зона)

Все нормализованные (принятые в ГОСТе)эллиптические днища геометрическиподобны друг другу.

— внутренний радиус днища при вершинеВ.

Для точки В:

Так как ,,то:

Тороэллиптическое днище:

В последнее время не применяется ваппаратуре.

Источник: https://StudFiles.net/preview/1075798/page:3/

Методика расчета сварных соединений

Коэффициент прочности продольного сварного шва

Условные обозначения:

Р—нагрузка соединения;

L — общая длина рассчитываемого шва;

δ— толщина соединяемых деталей;

k — катет углового шва;

d, i — диаметр пробок и их количество в пробочном соединении;

а — ширина шва при роликовой сварке.

Сварной шов при соединении встык (рис. 1) работает на растяжение и сжатие, причем все виды подготовок кромок принимаются эквивалентными.

рис.1 Стыковые швы; а — прямой; б — косой

Условие прочности шва (формула 1)

рис. 2 Соединения внахлестку валиковыми швами: а — лобовыми; б — фланговыми; г — сечение углового (валикового) шва

Угловые швы (рис. 2) рассчитывают на срез по сечению, проходящему через биссектрису прямого угла; расчетная высота шва h = k cos 45° ~ 0,7k

рис. 3

При несимметричном расположении швов относительно линии действия силы Р (рис. 3) усилия, возникающие в них, находятся из уравнений статики:

Сварные швы при соединении втавр рассчитываются различно в зависимости от типа швов (рис. 4)

По рис. 4, тип а

по рис. 4, типы б, в

рис. 5

Пробочные соединения (рис. 5, а) рассчитывают на срез по формуле

При соединении деталей точечной сваркой сварной шов работает на срез, тогда

или на отрыв, тогда

Шов, получаемый роликовой сваркой, рассчитывается на срез:

Расчет прочности швов, нагруженных перпендикулярно стыку свариваемых деталей

рис. 6  Соединение нагружено силой и моментом (швы стыковые)

Расчет прочности шва соединения, нагруженного силами и моментом (рис. 6), ведется по нормальным напряжениям (влиянием поперечной силы, как и при расчете балок на изгиб, пренебрегают):

Здесь We = δh2/6 — момент сопротивления сварного шва; Fe = δh — площадь сечения шва

рис. 7 Соединение нагружено силой и моментом (швы угловые)

В случае выполнения соединения угловыми швами (рис. 7) расчет ведут по условной методике, геометрически суммируя
напряжения от изгиба и растяжения с напряжениями, соответствующими поперечной силе:

Величина τQ учитывается лишь в случаях, когда поперечная сила сравнительно велика, а плечо внешнего момента небольшое;   в формуле учтены

Wc = 2×0,7kh2/6 — момент сопротивления биссекторного сечения швов; Fc = 2×0,7kh — площадь сечения швов

Расчет прочности швов, нагруженных в плоскости стыка свариваемых деталей

рис. 8 Швы нагружены в плоскости стыка свариваемых деталей

Угловые швы соединения рассчитывают обычно по одной из двух условных методик: по способу полярного момента инерции или по способу осевого момента инерции. В первом случае касательное напряжение от действия момента

где М — расчетный момент; rmax — расстояние от центра тяжести швов до наиболее удаленной точки шва; Ipc — полярный момент инерции швов

Ipc = Iус + Izc, где Iус и Izc — осевые моменты инерции швов относительно осей y и z

Касательное напряжение тм в любой точке считается направленным перпендикулярно к радиус-вектору, соединяющему эту точку с центром тяжести периметра швов. Моменты инерции вычисляются для биссекторного сечения швов.
По второму способу

где ymax — расстояние от оси элемента до наиболее удаленной точки шва;
Напряжение от растяжения (или сжатия)

где, Fe = 0,7 kL — общая площадь швов

Читайте также  Как выбрать катет сварного шва?

При учете влияния поперечной силы соответствующее напряжение вычисляется лишь для вертикального шва, т. е.

где Fвс = 0,7 kh

Суммарные касательные напряжения в опасной точке шва находятся геометрическим сложением.
Расчет швов точечного соединения (рис. 9) проводится по одному из двух вышеперечисленных способов.

Усилие в наиболее нагруженной точке от внешнего момента
или
геометрически суммируется с усилием, равным
обусловленным действие силы Р, т.е.
Условием прочности служит выражение

При расчете швов на переменную нагрузку вводят коэффициент у снижения допускаемого напряжения:
а) для стыковых швов при нагрузке, переменной по величине, γ = 1;  при нагрузке, меняющейся по величине и по направлению

б) для угловых швов при нагрузке, как переменной по величине, так и переменной по величине и направлению

Pmin и Pmax — наименьшее и наибольшее по абсолютной величине усилия, которые следует подставлять в формулы со своими знаками

Допускаемые напряжения при расчете сварных швов

* [σ]р — допускаемое напряжение для основного металла на растяжение

Смотри также:

Источник: http://razvitie-pu.ru/?page_id=1929

Гост 14249-89 «сосуды и аппараты. нормы и методы расчета на прочность»

Коэффициент прочности продольного сварного шва

ГОСТ 14249-89

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СОСУДЫ И АППАРАТЫ

НОРМЫ И МЕТОДЫ РАСЧЕТА НА ПРОЧНОСТЬ

ИПК издательство стандартов
Москва

https://www.youtube.com/watch?v=ZbnEIr5ITFc

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством химического и нефтяного машиностроения

ИСПОЛНИТЕЛИ

В.И. Рачков, канд. техн. наук; С.И. Зусмановская, канд. техн. наук (руководители темы); Н.М. Самсонов, д-р. техн. наук; Г.В. Мамонтов, канд. техн. наук; В.Д. Бабанский, В.Ф. Курылев, канд. техн. наук; С.М. Кутепов, канд. техн. наук; Л.С. Притыкина, И.В. Сухарникова, И.Е. Зейде, А. К. Кузнецова, Ю.С. Медведев, канд. техн. наук

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 18.05.89 № 1264

3. ВЗАМЕН ГОСТ 14249-80

4. Стандарт полностью соответствует СТ СЭВ 596-86, СТ СЭВ 597-77, СТ СЭВ 1039-78, СТ СЭВ 1040-88, СТ СЭВ 1041-88

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

* На территории Российской Федерации действует ГОСТ Р 51273-99.

СОДЕРЖАНИЕ

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СОСУДЫ И АППАРАТЫ

Нормы и методы расчета на прочность

Vessels and apparatus. Norms and methods of strength calculation

ГОСТ

14249-89

Дата введения 01.01.90

Настоящий стандарт устанавливает нормы и методы расчета на прочность цилиндрических обечаек, конических элементов, днищ и крышек сосудов и аппаратов из углеродистых и легированных сталей, применяемых в химической, нефтеперерабатывающей и смежных отраслях промышленности, работающих в условиях однократных и многократных статических нагрузок под внутренним избыточным давлением, вакуумом или наружным избыточным давлением и под действием осевых и поперечных усилий и изгибающих моментов, а также устанавливает значения допускаемых напряжений, модуля продольной упругости и коэффициентов прочности сварных швов. Нормы и методы расчета на прочность применимы при соблюдении «Правил устройства и безопасной эксплуатации сосудов, работающих под давлением», утвержденных Госгортехнадзором СССР, и при условии, что отклонения от геометрической формы и неточности изготовления рассчитываемых элементов сосудов и аппаратов не превышают допусков, установленных нормативно-технической документацией.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1.1. Расчетную температуру используют для определения физико-механических характеристик материала и допускаемых напряжений.

1.1.2. Расчетную температуру определяют на основании теплотехнических расчетов или результатов испытаний.

За расчетную температуру стенки сосуда или аппарата принимают наибольшее значение температуры стенки. При температуре ниже 20 °С за расчетную температуру при определении допускаемых напряжений принимают температуру 20 °С.

1.1.3. Если невозможно провести тепловые расчеты или измерения и если во время эксплуатации температура стенки повышается до температуры среды, соприкасающейся со стенкой, тоза расчетную температуру следует принимать наибольшую температуру среды, но не ниже 20 °С.

При обогреве открытым пламенем, отработанными газами или электронагревателями расчетную температуру принимают равной температуре среды, увеличенной на 20 °С при закрытом обогреве и на 50 °С при прямом обогреве, если нет более точных данных.

1.2. Рабочее, расчетное и пробное давление

1.2.1. Под рабочим давлением для сосуда и аппарата следует понимать максимальное внутреннее избыточное или наружное давление, возникающее при нормальном протекании рабочего процесса, без учета гидростатического давления среды и без учета допустимого кратковременного повышения давления во время действия предохранительного клапана или других предохранительных устройств.

1.2.2. Под расчетным давлением в рабочих условиях для элементов сосудов и аппаратов следует понимать давление, на которое проводится их расчет на прочность.

Расчетное давление для элементов сосуда или аппарата принимают, как правило, равным рабочему давлению или выше.

При повышении давления в сосуде или аппарате во время действия предохранительных устройств более чем на 10%, по сравнению с рабочим, элементы аппарата должны рассчитываться на давление, равное 90% давления при полном открытии клапана или предохранительного устройства.

Для элементов, разделяющих пространства с разными давлениями (например, в аппаратах с обогревающими рубашками), за расчетное давление следует принимать либо каждое давление в отдельности, либо давление, которое требует большей толщины стенки рассчитываемого элемента.

Если обеспечивается одновременное действие давлений, то допускается производить расчетна разность давлений. Разность давления принимается в качестве расчетного давления также для таких элементов, которые отделяют пространства с внутренним избыточным давлением от пространства с абсолютным давлением, меньшим чем атмосферное.

Если отсутствуют точные данные о разности между абсолютным давлением и атмосферным, то абсолютное давление принимают равным нулю.

Если на элемент сосуда или аппарата действует гидростатическое давление, составляющее 5 % и выше рабочего, то расчетное давление для этого элемента должно быть повышено на этожезначение.

1.2.3. Под пробным давлением в сосуде или аппарате следует понимать давление, при котором проводится испытание сосуда или аппарата.

1.2.4. Под расчетным давлением в условиях испытаний для элементов сосудов или аппаратов следует понимать давление, которому они подвергаются во время пробного испытания, включая гидростатическое давление, если оно составляет 5% или более пробного давления.

Читайте также  Свищ дефект сварного шва

1.3. Расчетные усилия и моменты

За расчетные усилия и моменты принимают действующие для соответствующего состояния нагружения (например, при эксплуатации, испытании или монтаже), усилия и моменты, возникающие в результате действия собственной массы присоединенных трубопроводов, ветровой, снеговой и других нагрузок.

Расчетные усилия и моменты от ветровой нагрузки и сейсмических воздействий определяют по ГОСТ 24756.

1.4. Допускаемое напряжение, коэффициенты запаса прочности и устойчивости

1.4.1. Допускаемое напряжение [s] при расчете по предельным нагрузкам сосудов и аппаратов, работающих при статических однократных* нагрузках, определяют:

для углеродистых и низколегированных сталей

(1)

для аустенитных сталей

(2)

__________

* Если сосуды и аппараты работают при многократных статических нагрузках, но количество циклов нагружения от давления, стесненности температурных деформаций или других воздействий не превышает 103, то такая нагрузка в расчетах на прочность условно считается однократной. При определении числа циклов нагружения не учитывают колебание нагрузки в пределах 15 % расчетной.

Предел ползучести используют для определения допускаемого напряжения в тех случаях, когда отсутствуют данные по пределу длительной прочности или по условиям эксплуатации необходимо ограничить величину деформации (перемещения).

При отсутствии данных по условному пределу текучести при 1 %-ном остаточном удлинении допускаемое напряжение для аустенитной стали определяют по формуле (1).

Для условий испытания допускаемое напряжение определяют по формуле

(3)

Для условий испытаний сосудов и аппаратов из аустенитных сталей допускаемое напряжение определяют по формуле

(4)

1.4.2. Коэффициенты запаса прочности должны соответствовать значениям, приведенным в табл. 1.

Таблица 1

Условие нагружения

Коэффициент запаса прочности

nт

nв

nд

nп

Рабочие условия

1,5

2,4

1,5

1,0

Условия испытания:

— гидравлические испытания

1,1

— пневматические испытания

1,2

Условия монтажа

1,1

Для сосудов и аппаратов группы 3, 4 по «Правилам устройства и безопасной эксплуатации сосудов, работающих под давлением» Госгортехнадзора СССР коэффициент запаса прочности по временному сопротивлению nв допускается принимать равным 2,2.

В случае, если допускаемое напряжение для аустенитных сталей определяют по формуле (1), коэффициент запаса прочности nт по условному пределу текучести Rp0,2 для рабочих условий принимается равным 1,3.

Для сосудов и аппаратов, работающих в условиях ползучести при расчетном сроке эксплуатации 104 до 2×105 ч, коэффициент запаса прочности nд равен 1,5. При расчетном сроке эксплуатации 2×105 ч допускается коэффициент запаса прочности nд принимать равным 1,25, если выполняют контроль жаропрочности и длительной пластичности материала в эксплуатации, а отклонение в меньшую сторону длительной прочности и ползучести от среднего значения не превышает 20%.

Расчет на прочность цилиндрических обечаек и конических элементов, выпуклых и плоских днищ для условий испытания проводить не требуется, если расчетное давление в условиях испытания будет меньше, чем расчетное давление в рабочих условиях, умноженное на 1,35.

1.4.3. Поправочный коэффициент к допускаемым напряжениям (h) должен быть равен единице, за исключением стальных отливок, для которых коэффициент h имеет следующие значения:

0,8 — для отливок, подвергающихся индивидуальному контролю неразрушающими методами;

0,7 — для остальных отливок.

1.4.4. Для сталей, широко используемых в химическом, нефтехимическом и нефтеперерабатывающем машиностроении, допускаемые напряжения для рабочих условий при h = 1 должны соответствовать приведенным в приложении 1.

1.4.5. Для стального листового проката, изготовляемого согласно техническим условиям по двум группам прочности, допускаемые напряжения для первой группы прочности принимают по табл. 5 приложения 1.

Для листового проката второй группы прочности (стали ВСт3пс, ВСт3сп, ВСт3Гпс и 09Г2С) допускаемое напряжение, принимаемое по табл. 5 приложения 1, увеличивают на 6%, а для стали 09Г2 — на 7 %.

При применении сталей ВСт3пс ВСт3сп и ВСт3Гпс второй группы прочности при температуре выше 250 °С, а сталей 09Г2С и 09ГС второй группы прочности при температуре выше 300 °С допускаемые напряжения принимают такими же, как для стали первой группы.

1.4.6. Разрешается допускаемое напряжение при температуре 20 °С определять по п. 1.4.1, принимая гарантированные значения механических характеристик в соответствии со стандартами или техническими условиями на стали с учетом толщины листового проката. При повышенных температурах допускаемые напряжения, принимаемые с учетом толщины проката и групп прочности стали, разрешается определять по нормативно-технической документации, утвержденной в установленном порядке.

1.4.7. Расчетные механические характеристики, необходимые для определения допускаемых напряжений при повышенных температурах для сталей, не приведенных в приложении 1, определяют после проведения испытаний представительного количества образцов, обеспечивающих гарантированные значения прочностных свойств.

1.4.8. Для элементов сосудов и аппаратов, работающих в условиях ползучести при разных за весь период эксплуатации расчетных температурах, в качестве допускаемого напряжения разрешается принимать эквивалентное допускаемое напряжение [s]экв, вычисляемое по формуле

,

(5)

где [s]i = [s]1; [s]2; … [s]n — допускаемое напряжение для расчетного срока эксплуатации при температурах ti(i = l, 2 …);

Ti — длительность этапов эксплуатации элементов с температурой стенки соответственно ti(i = l, 2 …), ч;

 — общий расчетный срок эксплуатации, ч;

т — показатель степени в уравнениях длительной прочности стали (для легированных жаропрочных сталей рекомендуется принимать m= 8).

Этапы эксплуатации при разной температуре стенки рекомендуется принимать по ступеням температуры в 5 и 10 °С.

1.4.9. Для сосудов и аппаратов, работающих при многократных нагрузках, допускаемую амплитуду напряжений определяют по ГОСТ 25859.

1.4.10. Для элементов сосудов и аппаратов, рассчитываемых не по предельным нагрузкам (например, фланцевых соединений) допускаемые напряжения должны определять по соответствующей нормативно-технической документации, утвержденной в установленном порядке.

Источник: https://files.stroyinf.ru/Data1/7/7839/