Магнитопорошковая дефектоскопия сварных швов

Содержание

Дефектоскопия трубопроводов – ультразвуковой способ контроля труб, сварных швов и соединений

Магнитопорошковая дефектоскопия сварных швов

В течение длительного периода использования, трубопроводы попадают под негативное внешнее и внутреннее воздействие окружающей среды. В итоге – металл деградирует, на нем образуются коррозийные образования, появляются трещины и сколы, и другие типы дефектов. Казалось бы, при создании проекта трубопровода используя современные технологии, должна быть обеспеченна полная защита магистральных коммуникаций.

Но, к сожалению, исключить в полной мере возникновение повреждений невозможно. Чтобы небольшие дефекты не превратились в серьезную проблему, используют различные виды контроля.

Одним из них, который не предусматривает вывода в ремонт магистральной системы – является дефектоскопия трубопроводов.

Этот метод диагностики получил широкое распространение. Его применение позволяет выявить следующие виды дефектов:

  • потеря уровня герметичности;
  • потеря контроля состояния напряженности;
  • нарушение сварных стыков;
  • разгерметизация сварных швов другие параметры, которые ответственны за надежное функционирование магистралей.

Проверять таким образом можно:

  • теплосеть;
  • газоподающую сеть;
  • нефтепроводы;
  • водоподающие трубопроводы и др.

Дефектоскопия на 100% способна выявить недостатки и предупредить серьезные аварии. Методы поиска дефектов постоянно усовершенствуются, обновляется оборудование, и испытываются новые модели дефектоскопов. Плюс ко всему этому проводятся различные анализы для того, что бы в последствие улучшить работу средств.

Ультразвуковая дефектоскопия

Ультразвуковая дефектоскопия трубопровода впервые была предоставлена Соколовым С.Я. в 1928 году. Она создана на основе изучения передвижения ультразвуковых колебаний, которые находились под контролем дефектоскопа.

Описывая принцип работы этих устройств, необходимо отметить, что волна звука не меняет направление своего передвижения в среде, имеющем одинаковую структуру. Когда среда разделяется удельным акустическим препятствием, то получается отражение волны.

: Магнитопорошковая дефектоскопия сварных швов

Чем выше количество таких препятствий, тем больше волн будет отражена от границы, которая разделяет среду. Возможность обнаружить небольшие дефекты отдельно один от другого определяет длина звуковой волны. А она при этом зависима от того, насколько часты звуковые колебания.

Многообразные задачи, стоящие при проведении ультразвуковой дефектоскопии, привели к тому, что появились большие возможности этого способа поиска неисправностей. Из них выделяют пять основных вариантов:

  1. Эхо – локация.
  2. Теневой метод.
  3. Зеркально-теневой.
  4. Зеркальный.
  5. Дельта – способ.

Приборы современного производства для ультразвуковой проверки оснащают несколькими возможностями измерения одновременно. И делают это в разных сочетаниях.

Эти механизмы отличаются очень высокой точностью, в результате остаточное пространственное разрешение и достоверность итогового вывода о дефективности трубопровода или его деталей получается максимально правдивым.

Ультразвуковой анализ не приносит повреждений исследуемой конструкции, и дает возможность провести все работы с максимально быстро и без вреда человеческому здоровью.

Ультразвуковая дефектоскопия  – это доступная во всех отношениях система контроля мест соединения и швов. То, что в основе этого метода положена высокая возможность проникновения ультразвуковых волн сквозь металл.

Анализ сварных швов

Дефектоскопия сварных швов трубопроводов является обязательной процедурой перед запуском в эксплуатацию магистральных коммуникаций, особенно проходящих под землей.

В любой конструкции  сварной шов являлся слабым местом, по этим причинам их качество всегда должно быть под контролем. На сварных швах лежит важная ответственность – они определяют герметичность и качество готового сооружения в целом.

Суть различных подходов для анализа таких стыков состоит в оценке тех или других физических свойств, характеризующих надежность и прочность трубопровода. Дефектоскопия определяет не только размер дефектов, но и оценивает качественное состояние швов. В эту оценку входит:

  1. показатель прочности;
  2. возможность противостоять коррозийным образованиям;
  3. степень пластичности;
  4. структура металла шовного соединения и области возле него;
  5. количество о габариты дефекта.

Способ ультразвукового исследования – это один из основных методов выявления дефектов на сварных швах.

: Обзор дефектоскопа магнитопорошкового

Дефектоскопия сварных соединений трубопроводов имеет следующие преимущества.

  • Быстрое проведение ревизии.
  • Высокая точность исследования.
  • Небольшая стоимость.
  • Абсолютная безвредность для человека.
  • Мобильность используемых для проверки устройств.
  • Возможность выполнять проверку качества функционирующего трубопровода.

Самая простая процедура дефектоскопии – это визуальный осмотр. Визуально – измерительный способ  позволяет на основе первых полученных результатов при внешнем осмотре определить наличие многих дефектов.

С помощью данного осмотра проверяют уровень качества готовых сварных стыков. Этот вид исследования применяют независимо от других типов контроля. Чаще всего он является очень информативным, и кроме этого, он самый дешевый.

Этим методом выявляют отклонения от номинальных размеров. При этом поверхность трубопровода тщательно очищают от грязи, металлических брызг, ржавых образований, окалины, масла и прочих загрязнений.

В зону внимания попадают сварные швы и прилегающая к ним зона. Все найденные на этом этапе недостатки устраняют до выполнения иных способов дефектоскопии.

Например, заметно выраженные различия в высоте сварного шва свидетельствуют о том, что дуга во время сварочных работ прерывалась.

На период проверочных мероприятий такие стыки рекомендуют обработать 10% раствором азотной кислоты. Если будут заметны грубые геометрические нарушения, то это свидетельствует о нарушении качества сварного шва.

: В видео представлен краткий обзор ультразвуковых приборовTG 110-DL, Avenger EZ

Преимущества данного метода исследования следующие:

  • Чаще всего на такую операцию нужно немного времени.
  • Небольшая стоимость проверки.
  • Безопасность данной процедуры для человеческого здоровья.
  • Можно проверить действующий трубопровод.

Ну и куда же без недостатков:

  • Возможность разрушающего действия.
  • Потребность в спецреактивах и иных расходных материалах.
  • Опытные образцы после этого процесса не всегда подлежали восстановлению.

Дефектоскопия стыков трубопроводов

Дефектоскопия соединений трубопроводов – это довольно ответственный процесс, который начинают только после того, как сварной шов готовый. Место состыковки должно остыть и его необходимо очистить от загрязнений.

Еще одним методом проверки является цветная дефектоскопия трубопроводов, ее по-другому называют капиллярный контроль. В основе данной проверке лежит капиллярная активность жидкости. Поры и потрескавшиеся образования создают сетку в стыке.

Когда они контактируют с жидкостью, то они просто пропускают ее сквозь себя. Такой способ дает возможность обнаружить скрытие проблемные образования. Проводят такую процедуру в соответствии к ГОСТу 1844-80.

Часто для этого вида поверки применяют магнитную дефектоскопию. В ее основу положили такое явление, как электромагнетизм. Возле проверяемой зоны механизм создает магнитное поле. Его линии свободно проходят сквозь металл, но когда присутствует повреждение, то линии теряют ровность.

: Проведение внутритрубной диагностики магистральных трубопроводов

Читайте также  Виды контроля сварных швов и соединений

Чтобы зафиксировать полученное изображение, используют магнитографическую или магнитопорошковую дефектоскопию. Если применяют порошок, то его накладывают сухим или в виде влажной массы (в нее добавляют масло). Порошок станет скапливаться только в проблемных местах.

Внутритрубная проверка

Внутритрубная дефектоскопия магистральных трубопроводов – это самый эффективный вариант обнаружения проблем, основанный на прогоне по системе труб спецустройств.

Ими стали внутритрубные дефектоскопы, с установленными специальными приборами. Эти механизмы определяют конфигурационные особенности поперечного сечения, выявляют вмятины, утончения и коррозийные образования.

Также есть внутритрубные механизмы, которые созданы для решения конкретных заданий. Например, оборудование, имеющее видео и фотокамеры, инспектирует внутреннюю часть магистрали и определяет степень кривизны и профиль конструкции. Также оно обнаруживает трещины.

Эти агрегаты передвигаются по системе потоком и оснащаются разнообразными датчиками, они накапливают и хранят информацию.

Внутритрубная дефектоскопия магистральных трубопроводов имеет весомые преимущества. Она не выставляет требований ставить устройства, которые ведут систематический контроль.

К сказанному необходимо добавить, что, используя это вид диагностики, можно производить регулярный контроль деформационных изменений по всему участку действующей конструкции с высоким уровнем производительности.

Таким путем можно вовремя установить участок, который несет аварийную угрозу всей системе, и своевременно провести ремонтные работы по устранению неполадок.

Говоря об этом методе, важно заметить, что есть ряд технических трудностей по его внедрению. Основное – он является дорогим. А второй фактор – это наличие устройств только для магистральных трубопроводов с большими объемами.

По этим причинам этот метод чаще всего применяют для относительно новых газопроводных систем. Внедрить этот способ для других магистралей можно посредством выполнения реконструкции.

Помимо оговоренных технических трудностей, этот метод отличается максимально точными показателями с обработкой проверочных данных.

Для исследования магистральных трубопроводов не обязательно выполнять все процедуры, чтобы убедиться в отсутствии проблем. Каждый участок магистрали можно проверить тем или другим наиболее подходящим способом.

Чтобы выбрать оптимальный вариант проверки нужно оценить, насколько важна ответственность стыка. И уже, исходя из этого, подбирать метод исследования. Например, для домашнего производства часто хватает визуального осмотра или других бюджетных видах проверок.

Записи по теме:
(1 5,00 из 5)
Загрузка…

Источник: https://trubanet.ru/stalnye-truby/defektoskopiya-truboprovodov-ultrazvukovojj-sposob-kontrolya-trub-svarnykh-shvov-i-soedinenijj.html

Магнитопорошковая дефектоскопия сварных швов

Магнитопорошковая дефектоскопия сварных швов

Самым первым методом контроля качества сварных соединений было простейшее сравнение готового шва с так называемым эталоном. Профессионалы варили, по их мнению, качественный шов, который и называли эталонным. С ним в последствии сравнивали все остальные швы. С тех пор технологии шагнули вперед и появились более совершенные методы контроля.

Современные методы контроля качества предполагают использование приборов, которые позволяют обнаружить скрытые от глаз дефекты. Один из таких приборов — дефектоскоп для проверки сварных швов.

При этом дефектоскоп может применяться при самых различных методах контроля: от радиографического до акустического.

В этой статье мы расскажем, что такое магнитопорошковая дефектоскопия сварных швов и каковы особенности данного метода контроля качества.

Общая информация

Магнитопорошковая дефектоскопия сварных соединений (она же магнитно-порошковая дефектоскопия) — метод контроля качества, суть которого заключается в обнаружении магнитных полей вокруг дефекта с применением ферримагнитных веществ.

Если у детали есть какой-либо дефект, то над ним обязательно образуется магнитное поле, которое будет искажаться. Деталь изначально намагничена и магнитные линии просто огибают дефекты, встречающиеся на пути. В результате происходит искажение магнитного поля. К тому же, по краям заготовки могут образовываться магнитные полюсы, которые в свою очередь создают локальные магнитный поля. На рисунке ниже схематично изображено магнитное поле.

Вся информация об изменении магнитного поля фиксируется с помощью дефектоскопа. Чем дефект больше, тем больше рассеивание, а значит и вероятность обнаружения дефекта. А если магнитные линии располагаются под прямым углом относительно дефекта, то вероятность его обнаружения повышается.

Технология

Теперь подробнее о том, как происходит магнитопорошковая дефектоскопия сварных швов. Чтобы обнаружить дефект недостаточно иметь правильное оборудование. Нужно также использовать специальное ферримагнитное вещество. Проще говоря, магнитный порошок. Его наносят на сварное соединение с помощью сухого или мокрого метода.

При сухом методе используется обычное порошкообразное магнитное вещество. А при мокром — специальная магнитная суспензия. В данном случае суспензия — это смесь магнитного порошка и жидкости. В качестве жидкости можно использовать трансформаторное масло, его смесь с керосином, а также смесь воды с веществами, препятствующими образованию коррозии.

Нельзя однозначно сказать, какой метод лучше: сухой или мокрый. В разных ситуациях приходится выбирать разные методы, а порой и вовсе комбинировать их между собой.

В любом случае, вы сможете обнаружить даже мелкие дефекты, вне зависимости от того, какое магнитное вещество будете использовать.

При применении порошка или суспензии вещество просто «собирается» вокруг дефекта, образуя замысловатые рисунки, если дефектов много. Таким образом удается точно определить не только местоположение, но и размер дефекта.

Пару слов об оборудовании. Оно может быть самым разнообразным: производители предлагают компактные бюджетные модели с минимумов функций, но вы также можете купить высокотехнологичные приборы с жидкокристаллическим дисплеем и множеством настроек.

Обычно дефектоскоп приобретают исходя из сферы его применения. Если контроль качества будет проводиться на выездном объекте, то важнее компактность, нежели большой функционал. А если контроль будет проводиться стационарно в цеху, то размер прибора не играет никакой роли.

В таких случаях можно сделать ставку на функционал и приобрести более технологичное устройство.

Особенности

Магнитопорошковый контроль, как и любой другой метод контроля сварных швов, имеет свои особенности, которые нужно знать и учитывать. Так главная особенность — это невозможность проведения контроля, если деталь изготовлена не из ферримагнитных металлов.

Это нужно учитывать, если вы собираетесь проводить контроль деталей из цинка или меди. Ведь такие металлы являются диамагнетиками, а значит вы просто не сможете провести качественный контроль.

Также нужно учитывать, что у данного метода контроля есть так называемый параметр чувствительности. Т.е.

, степень того, насколько точно будет выявлен дефект. И чувствительность зависит от многих факторов. На чувствительность влияют магнитные характеристики металла, напряженность магнитного поля, количество дефектов, их размер. Также влияет размер самой детали и ее форма.

В некоторых случаях на чувствительность влияет выбранный метод нанесения ферримагнитного вещества (сухой или мокрый). Все это нужно учитывать, чтобы понять, насколько качественно пройдет контроль.

Источник: https://svarkaed.ru/svarka/shvy-i-soedineniya/magnitoporoshkovaya-defektoskopiya-svarnyh-shvov.html

Дефектоскопия сварных швов

Дефекты сварных швов негативно влияют на качество и долговечность изготовленной металлоконструкции, провоцируя ее деформацию и разрушение со временем.

Поэтому сварку нужно выполнять таким образом, чтобы созданные соединения получались максимально качественными и аккуратными, лишенными недостатков.

Если же справиться с этой задачей мастерски не вышло, стоит поинтересоваться, существуют ли надежные способы устранения дефектов при сварке и изучить их.

Что такое дефекты сварочных соединений?

Дефекты сварных швов ‒ это изъяны на поверхности или внутри созданного путем применения сварочного оборудования шва.

Они могут иметь разную степень выраженности, форму, размер и приводят к снижению полезного срока металлоконструкции, могут влиять на ее эксплуатационные параметры, поэтому крайне нежелательны в работе.

Читайте также  Термообработка сварных швов

Внешние дефекты сварных швов.

Появление сварочных изъянов можно объяснить разными причинами:

  1. Созданные соединения могут иметь низкое качество, если мастер не обладает большим опытом выполнения сварочных операций: нарушает технологию электродуговой, аргоновой, лучевой сварки, пренебрегает подготовительным процессом, термообработкой узлов, путает схему сборки деталей, выбирает неверный режим функционирования сварочного аппарата при лазерной сварке и т. п.
  2. Также неважные показатели швов могут являться следствием применения кустарно изготовленного или неисправного оборудования при ручной электродуговой сварке, низкокачественного металла, дешевых расходных материалов.

Все шовные дефекты называются по-разному и условно делятся на несколько групп, каждая из которых отличается определенным видом и особенностями:

  • наружные;
  • внутренние;
  • сквозные.

Особенности недостатка определят наиболее подходящий способ его исправления. Для предупреждения подобных проблем в дальнейшем сварщику важно провести работу над ошибками и уяснить, что в его работе повлекло столь печальные результаты.

Это такие изъяны, которые не способны влиять на качество сварочного соединения. Но их количество в любом варианте должно быть минимальным, чтобы срок службы изделия был максимальным.

Видовое разнообразие дефектов

Неопытный сварщик в процессе создания сварных стыков полуавтоматом может столкнуться с разными видами дефектов сварки. Они отличаются внешними характеристиками и появляются вследствие нарушения технологии сварки: ТИГ, электродуговая ручная сварка, автомат и т.п.

Причины дефектов сварных швов.

Такие проблемы важно хорошенько изучить, что позволит не допускать порчу свариваемых деталей при ручной дуговой сварке и реализации иных технологий создания соединений металлоконструкций в дальнейшем.

  • наружные: трещины, подрезы, наплывы, кратеры, окалины, сварные раковины;
  • внутренние: пористая структура, недостаточная провариваемость, посторонние включения;
  • сквозные: трещины, прожоги.

Наружные недостатки имеют такое название, так как находятся на лицевой стороне соединения и видимы глазу. Для их обнаружения достаточно провести визуальный осмотр детали. Внутренние дефекты располагаются внутри сварочного соединения, поэтому сразу не заметны.

Определить наличие данной проблемы можно с помощью дефектоскопии сварных швов, включая ультразвуковую, механическую и рентген обработку. Наиболее катастрофичны сквозные изъяны, поскольку их устранение не всегда осуществляется на 100%.

Наружные дефекты

При нарушении технологии сварки и применении расходного материала неважного качества можно получить следующие дефекты сварки: наплывы, подрезы, незаваренные кратеры, поверхностные поры, прожоги, трещины и т.п.

Наплывы являются результатом стекания расплавленного металла сварной проволоки на нерасплавленный основной металл конструкции или предварительно осуществленный валик.

Такие недостатки могут иметь местный характер и проявляться отдельными зонами, а могут приобретать вытянутую форму и занимать приличную площадь на металлоизделии.

Основная причина появления наплывов заключаются в следующем:

  • сварщик неверно выставил силу тока при длинной дуге и ошибся с подбором скорости работы оборудования;
  • был выбран чрезмерно большой наклон плоскости, на которую накладывался сварной шов;
  • электрод неправильно вели, или он изменил свое первоначальное положении при выполнении кольцевых швов под флюсом;
  • сварщик имел недостаточный опыт или работал в неудобном пространственном положении: вертикальном или горизонтальном.

Подрезы являются углублениями на поверхности основного металла, идущими по краям сварного шва. Глубина подреза может колебаться в пределах 0,1-1 мм.

Причинами, по которым образуются такие дефекты сварных соединений, являются:

  • ток чрезмерно высокой силы;
  • напряжение дуги свыше нормы;
  • неудобная поза сварщика в пространственном плане;
  • небрежно выполненная сварка.

Наличие такой погрешностей опасно, поскольку подрезы способны уменьшить рабочую толщину металла в местах соединения металлических деталей, спровоцировать появление местной концентрации напряжений от рабочих нагрузок и стать причиной деформации сварных швов со временем.

Наименования дефектов сварного шва.

Также отметим, что подрезы стыковых и угловых швов, располагающиеся поперек действующих на них сил, могут вызвать резкое снижение вибрационной прочности соединений.

Источник: https://ccm-msk.com/magnitoporoshkovaya-defektoskopiya-svarnyh-shvov/

Магнитопорошковый метод контроля (МПД)

Магнитопорошковая дефектоскопия сварных швов

Магнитопорошковый метод — один из самых распространенных методов неразрушающего контроля стальных деталей. Он нашел широкое применение в авиации, железнодорожном транспорте, химическом машиностроении, при контроле крупногабаритных конструкций, магистральных трубопроводов, объектов под водой, судостроении, автомобильной и во многих других отраслях промышленности.

Масштабность применения магнитопорошкового метода объясняется его высокой производительностью, наглядностью результатов контроля и высокой чувствительностью. При правильной технологии контроля деталей этим методом обнаруживаются трещины, усталости и другие дефекты в начальной стадии их появления, когда обнаружить их без специальных средств трудно или невозможно.

Магнитопорошковый метод предназначен для выявления поверхностных и под поверхностных (на глубине до 1,5 … 2 мм) дефектов типа нарушения сплошности материала изделия: трещины, волосовины, расслоения, не проварка стыковых сварных соединений, закатов и т.д.

Суть магнитопорошкового контроля

Магнитный поток в бездефектной части изделия не меняет своего направления; если же на пути его встречаются участки с пониженной магнитной проницаемостью, например дефекты в виде разрыва сплошности металла (трещины, неметаллические включения и т.д.), то часть силовых линий магнитного поля выходит из детали наружу и входит в нее обратно, при этом возникают местные магнитные полюсы (N и S) и, как следствие, магнитное поле над дефектом.

Так как магнитное поле над дефектом неоднородно, то на магнитные частицы, попавшие в это поле, действует сила, стремящаяся затянуть частицы в место наибольшей концентрации магнитных силовых линий, то есть к дефекту. Частицы в области поля дефекта намагничиваются и притягиваются друг к другу как магнитные диполи под действием силы так, что образуют цепочные структуры, ориентированные по магнитным силовым линиям поля.

Наибольшая вероятность выявления дефектов достигается в случае, когда плоскость дефекта составляет угол 90грд. с направлением намагничивающего поля (магнитного потока). С уменьшением этого угла чувствительность снижается и при углах, существенно меньших 90грд. дефекты могут быть не обнаружены.

Способы нанесения индикатора

«Cухой» и «мокрый» способы нанесения индикатора на контролируемый объект. В первом случае для обнаружения дефектов используют сухой ферромагнитный порошок. При использовании «мокрого» метода контроль осуществляется с помощью магнитной суспензии, т.е. взвеси ферромагнитных частиц в жидких средах: трансформаторном масле, смеси трансформаторного масла с керосином, смеси обыкновенной воды с антикоррозионными веществами.

Виды намагничивания

При магнитопорошковом методе контроля применяют четыре вида намагничивания:

  • циркулярный; 
  • продольный (полюсной); 
  • комбинированный; 
  • во вращающемся магнитном поле.

Наиболее распространены в практике контроля три первых вида намагничивания. Применительно к простейшим деталям – сплошному цилиндрическому стержню или полому цилиндру – формулировка видов намагничивания может быть следующая.

Циркулярный – это такой вид намагничивания, при котором магнитное поле замыкается внутри детали, а на ее концах не возникают магнитные полюса.

Продольный (полюсной) – это такой вид намагничивания, при котором магнитное поле направлено вдоль детали, образуя на ее концах магнитные полюса.

Комбинированный – это такой вид намагничивания, при котором деталь находится под воздействием двух или более магнитных полей с неодинаковым направлением.
 

Этапы магнитопорошкового контроля

1. Подготовка детали к контролю.
Подготовка детали к контролю заключается в очистке поверхности детали от отслаивающейся ржавчины, грязи, а также от смазочных материалов и масел, если контроль проводится с помощью водной суспензии или сухого порошка. Если поверхность детали темная и черный магнитный порошок на ней плохо виден, то деталь иногда покрывают тонким просвечивающим слоем белой контрастной краски.

Читайте также  Как заварить вертикальный шов электросваркой?

2. Намагничивание детали.
Намагничивание детали является одной из основных операций контроля. От правильного выбора способа, направления и вида намагничивания, а также рода тока во многом зависит чувствительность и возможность обнаружения дефектов.

3. Нанесение на поверхность детали магнитного индикатора (порошка или суспензии).
Оптимальный способ нанесения суспензии заключается в окунании детали в бак, в котором суспензия хорошо перемешана, и в медленном удалении из него. Однако этот способ не всегда технологичен. Чаще суспензию наносят с помощью шланга или душа.

Напор струи должен быть достаточно слабым, чтобы не смывался магнитный порошок с дефектных мест. При сухом методе контроля эти требования относятся к давлению воздушной струи, с помощью которой магнитный порошок наносят на деталь.

Время стекания с детали дисперсной среды, имеющей большую вязкость относительно велико, поэтому производительность труда контролера уменьшается.

4. Осмотр детали. Расшифровка индикаторного рисунка и разбраковка. Контролер должен осмотреть деталь после стекания с нее основной массы суспензии, когда картина отложений порошка становится неизменной.

Детали проверяют визуально, но в сомнительных случаях и для расшифровки характера дефектов применяют оптические приборы, тип и увеличение которых устанавливают по нормативным документам.

5. Размагничивание и контроль размагниченности. Удаление с детали остатков магнитного индикатора.
Применяют два основных способа размагничивания:

  • Первый и наиболее эффективный из них — нагрев изделия до температуры точки Кюри, при которой магнитные свойства материала пропадают. Этот способ применяют крайне редко, так как при таком нагреве могут изменяться механические свойства материала детали, что в большинстве случаев недопустимо.
  • Второй способ заключается в размагничивании детали переменным магнитным полем с амплитудой, равномерно уменьшающейся от некоторого максимального значения до нуля.

Источник: http://etalon-rk.ru/magnitoporoshkovyj-metod-kontrolya-mpd/

Дефектоскопия сварных швов: характеристика основных видов, правила выполнения, достоинства и недостатки

Магнитопорошковая дефектоскопия сварных швов

Неразрушающие испытания сварных швов призваны оценивать физические свойства изделий, то есть насколько соединение прочно или надежно. На эти свойства влияет наличие дефектов.

Физические методы контроля дефектов сварных швов называют дефектоскопией сварных швов. По термодинамическому признаку физические способы подразделяются на такие, которые используют:

  • передачу энергии;
  • движение вещества.

Дефектоскопия сварных швов предназначена для определения соответствия их физических свойств характеристикам, указанным в технических условиях, иными словами – пригодности изделия к эксплуатации.

Виды дефектоскопии

Методы дефектоскопии сварных швов относятся к группе неразрушающего контроля и включают:

  • магнитопорошковую дефектоскопию;
  • ультразвуковую;
  • радиационную.

Магнитопорошковая

Относится к электромагнитным методам контроля. Принцип магнитопорошковой дефектологии строится на обнаружении магнитных полей рассеяния, образованных неоднородностями структуры или дефектами в исследуемом намагниченном образце.

Ферромагнитные частицы магнитного порошка, находясь в магнитном поле, перемещаются в направлении максимальной плотности магнитного потока и втягиваются в магнитное поле рассеяния над дефектной зоной сварного шва. Дефект обнаруживается по скоплению частиц порошка в форме валиков, которые очертаниями напоминают конфигурацию выявленных изъянов.

Для магнитопорошковой дефектоскопии применяют универсальные магнитные дефектоскопы с намагничиванием в постоянном или переменном магнитном поле.

Применение

При соблюдении технологии магнитопорошковая дефектоскопия обладает чувствительностью к выявлению мелких и тонких трещин. Использование способа позволяет обнаружить дефекты как поверхностные, так и подповерхностные, с высотой (глубиной) дефекта от 0.05 мм и раскрытием от 0.01 мм.

Изъяны, имеющие округлую форму, выявляются хуже. Внутренние дефекты крупного размера , залегающие на глубине до 6 мм от верхней плоскости сварного шва, также выявляются. Их обнаружение требует применения магнитного порошка более крупной фракции.

Шлаковые включения и газовые поры в сварном шве магнитопорошковой дефектоскопией не выявляются.

Способ применяется для дефектоскопии продольных соединений труб, выполненных стыковым электроконтактным способом, и обнаружения трещин и стянутых (узких) непроваров в швах трубопроводов, сваренных электродуговым способом встык.

Ультразвуковая

Относится к одному из методов акустического неразрушающего контроля, при котором используются механические колебания упругой среды с частотой от 0.5 до 10 МГц.

Принцип работы ультразвуковой дефектоскопии основан на использовании пьезоэлектрического эффекта, при котором с помощью пьезокристаллов происходит превращение электрических колебаний в механические.

Контроль ультразвуковой дефектоскопии осуществляется с помощью ультразвукового дефектоскопа. Это прибор для излучения ультразвуковых колебаний, приема отраженных сигналов и их регистрации и для определения координат выявленных дефектов. Эхо-сигналы регистрируют по экрану электронно-лучевой трубки.

Примерная стоимость ультразвукового дефектоскопа на Яндекс.маркет

Радиационная

В основе радиационной дефектоскопии лежит регистрация и анализ ионизирующего излучения после его взаимодействия с исследуемым предметом. Ослабление (поглощение и рассеивание) пучка излучения при его прохождении через разные зоны сварного шва происходит по-разному:

  • большая степень – в местах включений большой толщины и плотности по сравнению с основным материалом;
  • меньшая степень – в зонах с меньшей толщиной и плотностью материала.

Отсюда следует, что распределенная интенсивность пучка излучения по сечению контролируемого объекта является носителем информации его внутреннего строения или, иными словами – радиационным изображением объекта.

В соответствии со способом получения первичной информации существует три метода радиационной дефектоскопии:

  • радиометрический (регистрация электрических сигналов);
  • радиоскопический (наблюдение изображения на экране);
  • радиографический (фиксация изображения на бумаге, пленке).

Выбор метода зависит от технических условий, требований стандартов к конкретному объекту контроля, его конструктивных особенностей, технологии изготовления, размеров дефектов.

Радиационная дефектоскопия предполагает использование рентгеновских аппаратов – совокупности технических средств, функции которых – получение и использование рентгеновского излучения.

Аппаратура включает:

  • источник питания;
  • излучатель;
  • пульт управления;
  • вспомогательные устройства и принадлежности.

Общие правила выполнения дефектоскопии

Проведение дефектоскопии сварных швов включает несколько этапов.

Вначале производится выбор метода контроля, на который влияют:

  • технология сварки;
  • вид основного металла;
  • размеры и тип соединения, конфигурация;
  • ожидаемый тип дефектов и их ориентация.

Проведение контроля выполняется в соответствии с нормами и правилами, указанными в государственных стандартах.

Перед началом исследования персонал должен получить доступ ко всей информации об объекте контроля. Работы в большинстве случаев рекомендуется проводить по окончании всех этапов термообработки изделия. Некоторые сварные соединения исследуются по прошествии минимального периода, указанного в спецификации на продукцию. Контроль по обнаружению поверхностных дефектов сварного шва проводится перед исследованием на внутренние дефекты.

Заключительным этапом дефектоскопии сварных швов является разбраковка контролируемых объектов.

Достоинства и недостатки

Ввиду того что дефектоскопия сварных швов относится к неразрушающим методам контроля, она имеет такие же преимущества и недостатки.

Положительные моменты:

  1. Возможность проведения испытаний непосредственно на изделии, включая его опасные участки.
  2. Не выполняется разрушение деталей, что важно для дорогостоящих экземпляров.
  3. Контроль возможен без прекращения работы установки.
  4. Стоимость исследования ниже, чем при разрушающем контроле.

Недостатки:

  1. Выполняется косвенная оценка некоторых свойств, не имеющих значения при эксплуатации изделия.
  2. Для установления корреляционной связи «результат неразрушающего контроля – эксплуатационная надежность» требуются специальные исследования.
  3. Испытания чаще носят альтернативный характер (годен – негоден).

Источник: https://elsvarkin.ru/texnologiya/kontrol/defektoskopiya-shvov/