Подводная газопламенная резка

Газовая резка металлов

Подводная газопламенная резка

Кислородной или газовой резкой (ранее называвшейся автогенной резкой) называется процесс разрезания металла действием струи кислорода, в которой сгорает металл, предварительно подогретый до температуры воспламенения; горение металла идет на заранее намеченной плоскости.

Для осуществления этого процесса металл нагревают газовой горелкой в месте начала разреза до температуры воспламенения в кислороде и направляют на нагретую поверхность струю кислорода.

Нагретый верхний слой металла воспламеняется; выделяющееся при сгорании этого слоя тепло нагревает следующий слой, который также сгорает; струя кислорода уносит образующиеся окислы, я процесс горения распространяется на лежащие ниже слои.

Таким образом, постепенно под действием струи кислорода в определенном направлении металл выжигается, и кусок его может быть разрезан. В настоящее время при помощи газовой резки можно разрезать куски стали толщиной до 2000 мм и более. Применяя газовую резку, можно также вырезать детали, имеющие сложную форму.

Требования, которым должен удовлетворять металл, подвергаемый кислородной резке. Кислородной резке можно подвергать лишь те металлы, температура воспламенения которых ниже температуры их плавления; кроме того, для возможности газовой резки необходимо, чтобы температура плавления окислов металла была ниже температуры плавления самого металла.

Так, например, температура плавления малоуглеродистой стали около 1500°, а температура воспламенения около 1350°; следовательно, такая сталь должна поддаваться газовой резке. Другой пример: температура плавления чугуна около 1200°, а температура воспламенения около 1350°; очевидно, что чугун не будет резаться газовым способом, а будет только выплавляться в месте нагрева.

Чем меньше теплопроводность металла, тем лучше при прочих равных условиях он режется газовым способом; чем больше теплоты выделяется металлом при сгорании его, тем лучше он поддается газовой резке. Так, например, железо выделяет при сгорании количество тепла, почти достаточное для нагрева соседних слоев металла и плавления окислов, а при резке, например, никеля требуется подвод большого количества тепла извне.

Подогрев металла при газовой резке происходит от резака, который, кроме струи кислорода, подает и подогревающее пламя.

Резаки. Резаками, или режущими горелками, называют горелки, применяемые при кислородной резке металла. На фиг. 354, а показано устройство головки резака с последовательно расположенными мундштуками, а на фиг. 354, б —-с концентрическими мундштуками.

При движении резака с последовательно расположенными мундштуками подогревательный мундштук идет впереди режущего. Резаки с концентрическими мундштуками могут перемещаться во всех направлениях, но дают более широкий разрез, чем первые.

На фиг. 355 показано устройство универсального резака, применяемого при резке металла толщиной от 5 до 300 мм; подрисуночные надписи вполне объясняют чертеж. Тележка служит для перемещения резака в процессе работы; она устраняет необходимость держать резак и позволяет сохранить одинаковое расстояние между мундштуком и поверхностью разрезаемого металла. Привернутое к тележке циркульное устройство применяют в случае резки по окружности.

Горючее. При газовой резке можно применять все названные выше горючие газы, а также пары бензина, бензола, керосина.

Кислород. Чем чище применяемый при газовой резке кислород, тем меньше его расходуется, тем быстрее идет процесс резки. В табл. 42 приведены данные, характеризующие влияние чистоты кислорода на расход его и скорость резки.

Влияние газовой резки на свойства металла в слоях, прилежащих к плоскости разреза. Газовая резка не оказывает существенного влияния на свойства металла вблизи плоскости разреза: отмечается лишь незначительное повышение предела прочности (на 3—8%) и незначительное уменьшение относительного удлинения (на 5—10%), глубина же зоны влияния газовой резки составляет всего 1—1,5 мм. При резке ножницами глубина зоны влияния достигает 3—4 мм; металл при этом оказывается наклепанным.

Газовая резка может сопровождаться и незначительным изменением химического состава металла у поверхности реза: отмечается небольшое выгорание кремния и в случае резки, например, ацетиленом увеличение содержания углерода, повышающее твердость у поверхности реза. Поэтому лучший результат дает резка с использованием в качестве горючего водорода. Таким образом, газовая резка не оказывает практически заметного влияния на свойства метaллa.

Процесс газовой резки

Приступая к резке, проверяют исправность резака; применительно к толщине подлежащего резке металла, в головку резака ввертывают соответствующих размеров мундштуки и устанавливают (редуктором) давление кислорода. После этого открывают ацетиленовый вентиль, приоткрывают кислородный вентиль подогревающего пламени, зажигают горючую смесь и регулируют пламя.

Когда пламя будет отрегулировано, горелку устанавливают так, чтобы ось мундштука была перпендикулярна к поверхности подвергаемого резке металла, а расстояние от конца режущего сопла до этой поверхности составляло 3—6 мм. Поверхность металла нагревают до температуры воспламенения, пускают режущий кислород и начинают равномерно передвигать резак.

Скорость передвижения резака определяют толщиной разрезаемого металла.

Качество резки зависит от равномерности перемещения резака и от правильного выбора скорости перемещения. При излишне медленном перемещении резака рез получается широкий, при слишком быстром перемещении металл недостаточно прогревается, и разрез получается несплошной.

Читайте также  Гильотина для резки металла своими руками

Расход кислорода на 1 пог. м длины резки можно приближенно определить по эмпирической формуле

где Q — расход кислорода в л;

ð — толщина листа в мм;

а — ширина реза в мм.

В табл. 43 помещены данные, характеризующие процесс газовой резки стали в зависимости от толщины листа на 1 пог. м длины разреза. Данные, приведенные в табл. 4-3, являются средними и могут измениться в зависимости от конструкции резака.

Газовую резку применяют также для замены процесса ковки вырезкой деталей из толстых листов или болванок.

Подводная резка. Газовую резку применяют и при работах под водой. При подводной резке вода оттесняется от пламени либо продуктами горения, либо при помощи сжатого воздуха.

Давление сжатого воздуха, а также горючего газа и кислорода, подаваемых в горелку, увеличивается с увеличением глубины, на которой ведется подводная резка. Подводную резку широко используют при водолазных работах ЭПРОН.

В качестве горючего для подводной резки применяют главным образом водород (для больших глубин—до 40 м) и ацетилен (для меньших глубин — обычно до 15—20 м).

Машинная резка. При ручной резке качество реза не всегда однородно и удовлетворительно, так как трудно сохранить равномерность перемещения резака и постоянство расстояния его от поверхности разрезаемого металла. В виде примера дефектов ручной резки можно указать на оплавление краев поверхности разреза, глубокие борозды на ней.

Механизация процесса газовой резки улучшает качество реза и повышает производительность процесса.

Существуют полуавтоматические и автоматические машины для газовой резки. В полуавтоматах механизируется передвижение резака, а направление движению дается или вручную, или шаблонами. Полуавтоматы применяют при резке листов, вырезке из листов, для разделки шва под сварку.

В автоматах механизируется и направление движения резака.

Обработка поверхности металла методом газовой резки. Обработка поверхности металлического предмета резаком является разновидностью газовой резки металла. Этот вид обработки применяют вместо черновой обработки резном, и он может в ряде случаев заменить строгание, обточку (резка по касательной) и сверление.

При такой обработке газовая струя направляется не перпендикулярно поверхности металла, а под углом 25—30°. Самый процесс заключается в том, что поверхностный слой металла обрабатываемой детали выгорает в кислородной среде. Резаки, применяемые для этой цели, несколько отличаются от обычных резаков, в частности, имеют увеличенный размер отверстия в кислородном канале; этим достигается уменьшение скорости истечения кислородной струи.

Производительность процесса достигает 150 кг снимаемого в час металла при вполне удовлетворительном для дальнейшей обработки качестве поверхности. Расход кислорода на 1 кг снимаемого металла около 450 л.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Пароль на архив: privetstudent.com

Источник: http://privetstudent.com/referaty/proizvodstvo/119-gazovaya-rezka-metallov.html

Подводная резка металлов

Подводная газопламенная резка

Резка металлов под водой имеет большое значение при выполнении судоремонтных, судоподъемных и аварийно-спасательных работ.

Резка металлов под водой отличается многими специфическими особенностями. Разрезаемый металл находится в воде и интенсивно охлаждается, что затрудняет его достаточный прорев. Резчик, работающий под водой стеснен в своих движениях, так как он одет в специальное водолазное снаряжение. Видимость при подводной резке также ограничена.

Существуют три вида подводной резки металла:

  • газопламенная;
  • дуговая;
  • кислородно-дуговая.

При любом способе резка выполняется в газовой среде, которая создается искусственно или возникает естественно в процессе резки. Нагрев металла при резке под водой обеспечивается созданием газового пузыря, который оттесняет воду как от пламени, так и от нагреваемого участка разрезаемого металла.

Для подводной газокислородной резки применяют специальные резаки, которые работают на газообразном водороде или на жидком горючем бензине. Под водой металл охлаждается интенсивнее, чем на воздухе, поэтому для его подогрева требуется пламя в 10-15 раз мощнее, чем для аналогичных работ на воздухе.

Подводные резаки имеют устройства для создания и поддержания газового пузыря, оттесняющего воду от пламени. Для образования защитного газового пузыря служит углекислый газ, оксид углерода и дополнительно вдуваемый воздух.

Головка водородно-кислородного резака состоит из колпака 3 и мундштуков 1 и 2. По центральному каналу мундштука 1 поступает режущий кислород 4, а по кольцевому каналу между мундштуками 1 и 2 — водородно-кислородная смесь 5, образующая подогревающее пламя 7. Снаружи мундштука 2 имеется колпак 3, через который поступает сжатый воздух 6, служащий для образования пузыря 9 вокруг пламени.

Пламя резака зажигают над водой, после чего в мундштук подается сжатый воздух 6 и резак опускают под воду 10 (8 — струя режущего кислорода). Если пламя под водой погасло, то поднимают резак, зажигают и регулируют подогревающее пламя и производят вторичное погружение. При работе на больших глубинах применяют подводное зажигание пламени резака.

Для этой цели служит «зажигательная дощечка» и аккумуляторная батарея.

Рисунок 1 — Схема головки водородно-кислородного резака для подводной резки

Резак для водородно-кислородной подводной резки показан на рисунке 2. Водородно-кислородным резаком режут стали толщиной до 70 мм на глубине до 30 м. Резак состоит из мундштука 1, головки 2, колпака 7, вентилей 4 и 6 и рукоятки 5. Режущий кислород подается через вентиль 4 в — центральный канал мундштука 1. Водородно-кислородная смесь поступает в головку 2 по трубке 3, а сжатый воздух — в колпак 7 через вентиль 6.

Читайте также  Станок для фигурной резки фанеры

Водород и кислород поступают в резак по шлангам из баллонов. Воздух, подается по отдельному шлангу из компрессора или баллонов. Водородно-кислородное пламя не имеет ярко выраженного ядра (отсутствуют частицы углерода в пламени), что усложняет его регулировку. Поэтому более удобным является применение в качестве горючего бензина. При резке металлов под водой бензин не испаряется, а распыляется кислородом.

В зону подогревающего пламени подается распыленный бензин, который успевает испариться и сгореть в кислороде.

Рисунок 2 — Резак для водородно-кислородной резки

Резак для бензинокислородной резки изображен на рисунке 3. Бензорез состоит из головки 1, соединительных трубок 2 и корпуса с рукояткой 3. На корпусе рукоятки резака имеются три вентиля — вентиль 4 для бензина, 5 и 6 для кислорода. Бензин подают из напорного бачка, необходимое давление создается азотом, подаваемым из баллона через редуктор.

Рисунок 3 — Резак для бензин-кислородной подводной резки

Сущность электрокислородной подводной резки заключается в том, что место реза подогревается дугой прямого действия, горящей между изделием и трубчатым стальным электродом, через который подается режущий кислород. Кислород к электроду подводят через электрододержатель, для пуска кислорода держатель снабжен вентилем. Для электрокислородной резки используют металлические, угольные или графитовые электроды, наибольшее применение нашли стальные электроды.

Для изготовления электродов применяют стальные цельнотянутые трубки наружным диаметром 5-7 мм, внутренним — 2-3 мм, длиной — 450 мм со специальным водонепроницаемым покрытием. Для питания используют установки постоянного тока. При резке применяется прямая полярность, сила тока не превышает 400 А. Электрокислородную резку можно выполнять на значительных глубинах до 100 м. Расход кислорода составляет 6-10 м3/ч. Недостатком электрокислородной резки стальным электродом является большой расход электродов.

Электрод длиной 450 мм расходуется в среднем в течение 1 мин.

а — стального трубчатого электрода; 1 — стальная толстостенная трубка, 2 — обмазка, 3 — канал для кислорода; б — угольного электрода; 1 — угольный электрод или графитовый стержень, 2 — металлическая оболочка, 3 — трубка для кислорода, 4 — покрытие; в — карборундового электрода; 1 — карборундовый стержень, 2 — металлическая оболочка, 3 — канал для кислорода, 4 — покрытие

Рисунок 4 — Поперечный разрез

Для резки применяют также угольные или графитовые электроды. В осевой канал электрода вставляется медная или кварцевая трубочка. Для увеличения электропроводности электрода: и повышения механической прочности стержни покрывают снаружи металлической оболочкой, на поверхность которой наносят водонепроницаемый слой покрытия. Угольный электрод длиной 250 мм горит 10-12 мин.

К недостаткам угольных электродов относится значительный наружный диаметр 15-18 мм, что не позволяет вводить электрод в полость реза. Для электрокислородной подводной резки нашли применение трубчатые карборундовые электроды со стальной оболочкой и водонепроницаемым покрытием. Срок службы карборундового электрода длиной 250 мм, диаметром 12-15 мм — 15-20 мин.

Источник: http://weldering.com/podvodnaya-rezka-metallov

Pereosnastka.ru

Подводная газопламенная резка

Подводная резка металлов

Категория:

Резание металла

Подводная резка металлов

Разработка и усовершенствование способов огневой резки и электрической сварки металлов иод водой значительно расширили возможности выполнения подводных технических работ — судоремонтных, судоподъемных, аварийно-спасательных, строительных и т. д.

Подводные работы по огневой резке металла отличаются многими специфическими особенностями, часто сопряжены с исключительными трудностями и значительной опасностью для работающих. Разрезаемый металл погружен в водную среду, интенсивно его охлаждающую; это весьма затрудняет достаточный подогрев металла.

Работающий стеснен в своих движениях тяжелым и неудобным водолазным снаряжением и имеет недостаточную устойчивость. Видимость при подводных работах обычно очень плохая. Кроме того, имеются дополнительные трудности, создаваемые течением и волнением воды, значительными глубинами, загрязнениями поверхности металла и др.

Чаще всего приходится резать многослойный металл, причем слои пакета нередко расшатаны взрывом или ударом при аварии и т. и.

Простейшим способом является дуговая резка, исследованная автором книги. Дуговую резку под водой обычно выполняют металлическим стальным электродом диаметром 6—7 мм. Для электродных стержней применяется катаная проволока, на которую наносят слой обмазки в количестве около 30% веса стержня, например, следующего состава: 38% мела; 56% железной окалины; 6% портландцемента; 35 частей на 100 частей сухой смеси жидкого стекла (водный раствор).

После просушки и прокалки электродов при температуре 250—300 °С слой обмазки пропитывается водонепроницаемым составом путем погружения в лак или другой подходящий раствор.

Слой обмазки должен обладать достаточной механической прочностью и образовывать при горении дуги на конце электрода выступающий козырек, заметно улучшающий процесс резки.

Расплавленный металл вытекает из полости реза под действием силы тяжести, выдувается струей газов и паров, создаваемой дугой, и удаляется движениями электрода, которые производит резчик, в особенности при резке металла значительных толщин.

Дуговая резка стальным электродом имеет ряд несомненных достоинств, придающих методу практическую ценность: сравнительная простота необходимого оборудования; простота изготовления и недефицитность электродов, для которых пригодна любая стальная проволока подходящего диаметра, имеющаяся под рукой; сравнительно небольшой диаметр электрода, обычно меньше ширины получаемого реза, поэтому электрод можно вводить в полость реза, что позволяет резать металл значительной толщины — до 80 мм и, что особенно важно для подводных работ, резать многослойные пакеты последовательно, слой за слоем.

Читайте также  Кислородно пропановая резка металла

Для осуществления дуговой резки под водой с приемлемыми скоростями необходим мощный источник тока для питания дуги; обычно применяются токи 500—1000 и. Работа ведется чаще всего

Рис. 1. Дуговая резка металла значительных толщин

Подводные резаки строят с подогревательной частью для различных горючих газов. Наибольший тепловой эффект дает ацетилен, но взрывоопасность и возможность самопроизвольного взрывчатого распада ацетилена при давлении свыше 1,5—2 ати затрудняют его применение в подводных работах, так как даже при небольших речных глубинах часто приходится превышать допустимые пределы давления для ацетилена, чтобы преодолеть противодавление столба воды.

В настоящее время ацетилен для подводной резки совершенно не применяется, чаще всего используется водород. Водород невзрывоопасен, поэтому он позволяет работать на глубинах до 30—40 м и дает длинный факел подогревательного пламени.

Как подогревательный газ, водород имеет и крупные недостатки, к которым относится его малая плотность. Баллон, вмещающий б м3 водорода, по весу содержит его всего 0,54 кг.

Поэтому требуется транспортирование значительного количества баллонов с водородом для обеспечения работ, что часто встречает большие затруднения.

Водородно-кислородное пламя не имеет четко выраженного ядра вследствие отсутствия частиц углерода в пламени, что усложняет регулирование пламени. Водород даёт меньшую калорийность пламени на 1 м3 ио сравнению с углеводородами; это увеличивает его расход и замедляет процесс резки, увеличивая время разогрева при начале каждого реза.

Возможными экономически более выгодными заменителями водорода могут служить различные газообразные углеводороды и их смеси. В связи с трудностью обеспечения подводных работ горючими газами давно встал вопрос о применении для этих работ жидких горючих, в первую очередь бензина.

Первоначальные подводные бензорезы, по аналогии с обычными бензорезами для работ на воздухе, конструировались с предварительным испарением бензина и подачей его паров в камеру смешения подогревательной части бензореза. В подводных бензорезах применялся электрический подогрев бензина.

Эти бензорезы оказались непригодными для производственного применения.

Новый принцип конструирования подводных бензорезов был предложен и реализован в период второй мировой войны. Оказалось возможным отказаться от предварительного испарения бензина и заменить испарение распылением, или пульверизацией.

Рис. 2. Схема подводного зажигания резака:1 — резак; 2 — зажигательная дощечка; 3 — аккумуляторная батарея; 4 — реостат

Бензин распыляется кислородом, и в зону подогревательного пламени подается тончайшая бензиновая пыль, успевающая испариться и сгореть полностью. Это изобретение резко повысило эксплуатационные качества подводного бензореза и выдвинуло бензинокислородную резку, пожалуй, на первое место среди способов подводной газокислородной резки.

Современный подводный бензорез имеет следующее устройство. Бензин под значительным давлением поступает в камеру смешения по нескольким спиральным каналам малого сечения и входит в камеру отдельными тонкими струйками. К каждому выходному отверстию бензина тангенциально подходит струйка подогревательного кислорода, распыляющая бензин в камере смешения особого устройства, где происходит испарение и воспламенение распыленного бензина, догорающего в наружном факеле подогревательного пламени.

Бензин подается из напорного бачка, необходимое давление в котором создается инертным негорючим газом, обычно азотом, подаваемым из баллона через редуктор. Нормальная установка, помимо бензореза со шлангами, включает батарею из 6—12 баллонов кислорода, бачок для бензина и баллон с азотом.

Бензорез расходует за 1 ч непрерывной работы 30—60 м3 кислорода, 10—12 кг бензина; расход азота незначителен и идет лишь на создание давления в бензиновом бачке, поэтому одного баллона достаточно на несколько дней работы.

Рис. 3. Подводный бензорез

Преимуществами бензинокислородной резки является большая тепловая мощность подогревательного пламени, сокращение расходов на транспортирование баллонов с водородом, недефицитность горючего — бензина. Бензино-кислородное пламя имеет хорошо очерченное ядро, облегчающее регулирование пламени.

Продукты сгорания пламени содержат много неконденсирующихся газов СО и С02, образующих устойчивый защитный газовый пузырь, что делает излишним подведение дополнительного защитного воздуха или кислорода, упрощает и удешевляет установку и ее эксплуатацию.

Подводная газокислородная резка обеспечивает высокую производительность. Необходимая для резки установка транспортабельна, негромоздка, всегда готова к действию и достаточно надежна в работе. Наряду с указанными достоинствами, подводная газокислородная резка имеет серьезные недостатки, часто заставляющие прибегать к другим процессам.

К этим недостаткам относится, например, довольно заметное реактивное действие струи газов, вытекающих из резака, мешающее работе водолаза-резчика.

Кроме того, размеры мундштука газокислородного резака настолько значительны, что он не может быть введен в полость реза, а потому при разрезке многослойных неплотных пакетов для доступа к нижележащему элементу необходимо вырезать и удалить довольно широкую полосу из вышележащего элемента пакета, что обычно трудно и требует много времени.

Одним из серьезных недостатков подводной газокислородной резки является трудность зажигания и регулирования подогревательного пламени. Операция зажигания и регулирования пламени под водой трудна и редко применяется. Зажигание и регулирование пламени над водой и последующий спуск водолаза требуют много времени, особенно при значительных глубинах.

Реклама:

Подводная электрокислородная резка

Источник: http://pereosnastka.ru/articles/podvodnaya-rezka-metallov