Правила резки металлов под водой

Подводная резка металлов

Правила резки металлов под водой

Резка металлов под водой имеет большое значение при выполнении судоремонтных, судоподъемных и аварийно-спасательных работ.

Резка металлов под водой отличается многими специфическими особенностями. Разрезаемый металл находится в воде и интенсивно охлаждается, что затрудняет его достаточный прорев. Резчик, работающий под водой стеснен в своих движениях, так как он одет в специальное водолазное снаряжение. Видимость при подводной резке также ограничена.

Существуют три вида подводной резки металла:

  • газопламенная;
  • дуговая;
  • кислородно-дуговая.

При любом способе резка выполняется в газовой среде, которая создается искусственно или возникает естественно в процессе резки. Нагрев металла при резке под водой обеспечивается созданием газового пузыря, который оттесняет воду как от пламени, так и от нагреваемого участка разрезаемого металла.

Для подводной газокислородной резки применяют специальные резаки, которые работают на газообразном водороде или на жидком горючем бензине. Под водой металл охлаждается интенсивнее, чем на воздухе, поэтому для его подогрева требуется пламя в 10-15 раз мощнее, чем для аналогичных работ на воздухе.

Подводные резаки имеют устройства для создания и поддержания газового пузыря, оттесняющего воду от пламени. Для образования защитного газового пузыря служит углекислый газ, оксид углерода и дополнительно вдуваемый воздух.

Головка водородно-кислородного резака состоит из колпака 3 и мундштуков 1 и 2. По центральному каналу мундштука 1 поступает режущий кислород 4, а по кольцевому каналу между мундштуками 1 и 2 — водородно-кислородная смесь 5, образующая подогревающее пламя 7. Снаружи мундштука 2 имеется колпак 3, через который поступает сжатый воздух 6, служащий для образования пузыря 9 вокруг пламени.

Пламя резака зажигают над водой, после чего в мундштук подается сжатый воздух 6 и резак опускают под воду 10 (8 — струя режущего кислорода). Если пламя под водой погасло, то поднимают резак, зажигают и регулируют подогревающее пламя и производят вторичное погружение. При работе на больших глубинах применяют подводное зажигание пламени резака.

Для этой цели служит «зажигательная дощечка» и аккумуляторная батарея.

Рисунок 1 — Схема головки водородно-кислородного резака для подводной резки

Резак для водородно-кислородной подводной резки показан на рисунке 2. Водородно-кислородным резаком режут стали толщиной до 70 мм на глубине до 30 м. Резак состоит из мундштука 1, головки 2, колпака 7, вентилей 4 и 6 и рукоятки 5. Режущий кислород подается через вентиль 4 в — центральный канал мундштука 1. Водородно-кислородная смесь поступает в головку 2 по трубке 3, а сжатый воздух — в колпак 7 через вентиль 6.

Водород и кислород поступают в резак по шлангам из баллонов. Воздух, подается по отдельному шлангу из компрессора или баллонов. Водородно-кислородное пламя не имеет ярко выраженного ядра (отсутствуют частицы углерода в пламени), что усложняет его регулировку. Поэтому более удобным является применение в качестве горючего бензина. При резке металлов под водой бензин не испаряется, а распыляется кислородом.

В зону подогревающего пламени подается распыленный бензин, который успевает испариться и сгореть в кислороде.

Рисунок 2 — Резак для водородно-кислородной резки

Резак для бензинокислородной резки изображен на рисунке 3. Бензорез состоит из головки 1, соединительных трубок 2 и корпуса с рукояткой 3. На корпусе рукоятки резака имеются три вентиля — вентиль 4 для бензина, 5 и 6 для кислорода. Бензин подают из напорного бачка, необходимое давление создается азотом, подаваемым из баллона через редуктор.

Рисунок 3 — Резак для бензин-кислородной подводной резки

Сущность электрокислородной подводной резки заключается в том, что место реза подогревается дугой прямого действия, горящей между изделием и трубчатым стальным электродом, через который подается режущий кислород. Кислород к электроду подводят через электрододержатель, для пуска кислорода держатель снабжен вентилем. Для электрокислородной резки используют металлические, угольные или графитовые электроды, наибольшее применение нашли стальные электроды.

Для изготовления электродов применяют стальные цельнотянутые трубки наружным диаметром 5-7 мм, внутренним — 2-3 мм, длиной — 450 мм со специальным водонепроницаемым покрытием. Для питания используют установки постоянного тока. При резке применяется прямая полярность, сила тока не превышает 400 А. Электрокислородную резку можно выполнять на значительных глубинах до 100 м. Расход кислорода составляет 6-10 м3/ч. Недостатком электрокислородной резки стальным электродом является большой расход электродов.

Электрод длиной 450 мм расходуется в среднем в течение 1 мин.

https://www.youtube.com/watch?v=cmnDqJFmcKY

а — стального трубчатого электрода; 1 — стальная толстостенная трубка, 2 — обмазка, 3 — канал для кислорода; б — угольного электрода; 1 — угольный электрод или графитовый стержень, 2 — металлическая оболочка, 3 — трубка для кислорода, 4 — покрытие; в — карборундового электрода; 1 — карборундовый стержень, 2 — металлическая оболочка, 3 — канал для кислорода, 4 — покрытие

Рисунок 4 — Поперечный разрез

Для резки применяют также угольные или графитовые электроды. В осевой канал электрода вставляется медная или кварцевая трубочка. Для увеличения электропроводности электрода: и повышения механической прочности стержни покрывают снаружи металлической оболочкой, на поверхность которой наносят водонепроницаемый слой покрытия. Угольный электрод длиной 250 мм горит 10-12 мин.

К недостаткам угольных электродов относится значительный наружный диаметр 15-18 мм, что не позволяет вводить электрод в полость реза. Для электрокислородной подводной резки нашли применение трубчатые карборундовые электроды со стальной оболочкой и водонепроницаемым покрытием. Срок службы карборундового электрода длиной 250 мм, диаметром 12-15 мм — 15-20 мин.

Читайте также  Резка тонкого листового металла

Источник: http://weldering.com/podvodnaya-rezka-metallov

Резка металла водой своими руками — Металлы, оборудование, инструкции

Правила резки металлов под водой

Известная поговорка о том, что вода камень точит, умалчивает о том факте, что она ещё и металл режет, да не за сотни лет, а моментально. Много сказано о резке металла своими руками при помощи плазматронов – водой, превращающейся под воздействием электричества в дугу плазмы.

Но существует ещё один способ, дающий более чистый срез, не нуждающийся в финишной обработке – это гидроабразивная резка металла.

Разделение детали водой без специальной подготовки жидкости, даст менее гладкие края заготовок, тогда придётся их обрабатывать дополнительно своими руками при помощи инструментов с применением силы.

При условии, что водно-песчаная смесь, подаваемая под давлением, применяется для резки металла толщиной до 20 см, лучше чтобы края заготовок обрабатывать дополнительно не приходилось. А всего-то подготовительный процесс заключается в фильтрации воды.

Гидроабразивная резка металла

Преимущества гидроабразивной струи

Гидроабразивная резка была разработана для изготовления деталей для авиации. Впоследствии этот метод был назван лучшим в обработке тугоплавких материалов и сталей. Теперь он используется на производствах, где работает оборудование с ЧПУ. Не меньшее значение резка водой имеет для автомастерских и изготовления предметов быта своими руками, где применяется оборудование без крепежей.

Низкий температурный режим работы даёт преимущества в обработке стали. Резка металла плазмой или газом приводит к сильному нагреву металла, что вызывает окисление и прочие побочные эффекты (в зависимости от индивидуальных характеристик металла).

Воздействие на металл абразивных частиц, подаваемых под большим давлением с водой, тоже приводило бы к нагреву листа и его оплавлению, но резка происходит настолько быстро, что сравнить её по чистоте реза можно только с лазером, а по скорости с плазмотроном. Прогрев обрабатываемой поверхности при работе соответствующий – он настолько незначителен, что даже окалин нет.

Как нет зависимости от размера оборудования и способа работы — без участия человека или проведение реза оборудованием на ручном управлении.

Приятным моментом при проведении работ своими руками состоит в том, что никаких сильных запахов, дыма и пыли оборудование не производит.

Держать под рукой запасные режущие инструменты так же нет необходимости, это оборудование работает без твёрдых резцов – только очень мелкий песок с водой.

Скальпелем, отделяющим толстенные куски металла с хирургической точностью, выступает вода, поступающая в сопло под давлением, на выходе из сопла она насыщается абразивными микрочастицами, при мгновенном смешивании получается мощная режущая смесь.

Пример резки металла на установке ГАР

Весь цикл резки как на заводском оборудование с ЧПУ, так и своими руками на обычном станке проводится в один этап. Тонкие и толстые, тугоплавкие и тягучие материалы режутся на одной и той же скорости, без каких-либо ограничений.

Станки с возможностью обрабатывать насколько деталей одновременно – это возможность в кратчайшие сроки провести необходимую обработку металла и стекла, пластика и резины, благодаря тому, что нет необходимости перенастраивать оборудование.

Детали из материалов разной твёрдости при необходимости будут обработаны за один рабочий цикл.

Строение сопла ГАР для резки чистой водойСтроение сопла ГАР для резки водой с абразивом

При обработке материалов своими руками, обрабатывать их поочерёдно выгоднее в плане экономии времени, которое ушло бы на закреплении материалов на рабочей поверхности, а комбинированная деталь, состоящая из нескольких совершенно разных материалов, легко и точно будет разрезана при помощи гидроабразивной смеси подаваемой под высоким давлением.

Применение станков гидроабразивной резки

Оборудование, работающее на гидроабразивной взвеси применяется для:

  1. Художественной резки металла водой, и прочих материалов с различными техническими характеристиками. Тонки е и широкие детали можно резать не только под прямым углом. Изменение наклона режущей субстанции не скажется на чистоте краёв среза. Ни один из материалов, которые режет это оборудование, не требует последующей обработки, деталь из-под гидрорезца выходит готовой на 100%.
  2. Самые сложные элементы, повторяющиеся в нескольких фрагментах и детали, требующие повышенной точности, лучше выполнять на программируемом станке резки водой. Компьютерная программа лучше человека управится с точными задачами по обработке деталей, не терпящих отклонений. Для творчества и изготовления предметов, не задействованных в сложных механических агрегатах, вполне подойдёт оборудование на ручном управлении.
  3. Максимальная толщина металла для резки водой, как уже было сказано ранее, составляет 200 мм, но есть и исключения. Гидроабразивной взвесью можно резать медь толщиной всего 5 мм, тугоплавкие сплавы до 12 мм, титан толщиной до 17 мм. Если посмотреть на сферу применения этих металлов и их стоимость, то не так уж велика потеря.
  4. При необходимости сделать своими руками украшение из меди или латуни, то верхний слой убирается поэтапно. Так что углубление в 1 см можно сделать за 2 прохода вместо одного. Как говорят скульпторы, работающие над шедевром с резцом – отсечь всё ненужное. Тот же принцип работы и с гидроабразивным режущим элементом. Для точного воспроизведения детали лучше воспользоваться станком на компьютерном управлении.

Станки без ЧПУ работают на ручном управлении, настройка станка для резки целиком производится оператором, что может дать некоторые неточности, если угол резки выставлен неверно. Но такой станок не требует никаких специфических знаний. Он значительно дешевле своего управляемого компьютером собрата.

Мало функциональное оборудование, разобраться в его настройках можно достаточно быстро.

Читайте также  Резка металла электросваркой

Простые и сложные линии, а так же стандартные геометрические фигуры на этом станке может выполнить своими руками каждый, после краткого ознакомления с устройством станка, техникой безопасности, способом заправки его водой с песчаным абразивом, способом изменения угла резки.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: http://StankiExpert.ru/stanki/stanki-dlya-rezki/rezka-metalla-vodojj-svoimi-rukami.html

Резка металла водой: применение, принцип работы, преимущества

Водно-абразивная резка металла – это самая современная и прогрессивная технология обработки. Сердце системы водоструйного резания — насос высокого давления. На сегодня уже разработаны экспериментальные станки с давлением воды 6000 атмосфер.

Проходя сквозь сопло (материалом может выступать: рубин, сапфир или алмаз) толщиной 0,1 мм, вода набирает скорость в три раза большей скорости звука и образует тонкий сфокусированный поток, который может резать практически все металлы.

При гидроабразивной резке металла, толщина металла может быть до 300 мм.

Главным преимуществом технологии резания водной струйного является отсутствие нагревания изделий, то есть термическое воздействие на материал — отсутствует, что исключает напряжение и изгиб обрабатываемой детали. В итоге появляются резы очень отличного качества, что делает не нужным последующую дорогостоящую обработку.

Некоторые металлы нельзя резать лазером из-за их отражения, а при плазменной резке – нельзя использовать токопроводящий материал. Тут и понадобится гидроабразивная резка, которая является прогрессивным способом резки. Но она предполагает намокание изделия, что может плохо отразится для металле, подверженному коррозии.

Принцип гидроабразивной резки металла имеет самое главное преимущество — тонкая, как нить, струйка, позволяет создавать значительно меньшие потери металла по сравнению с обычной резкой.

Большим недостатком гидроабразивной резки металла является очень высокие затраты на резку: 1 час работы выйдет в 1500 руб. К тому же все детали очень скоро вырабатывают свой ресурс из-за большого давления.

Так же недостатком является то что все детали требуют ежедневного осмотра и даже ремонта ремонта.

В общем, если есть решение купить станок гидроабразивной резки, то такая резка металла водой своими руками, приводит к постоянным высоким затратам.

Процесс гидроабразивной резки

Собственно процесс гидроабразивной резки состоит из четырех фаз.

  • Фаза № 1. Образования изогнутой фронтальной поверхности резания. Сфокусированный гидроабразивный струя прорезает в заготовке узкую щель – струя постепенно вводится в заготовку и с постоянной скоростью резания движется по ней.
  • Фаза № 2. Начало образования ступеньки (обрыва). Угол между струей и поверхностью резания постепенно увеличивается.
  • Фаза № 3. Завершение образования ступеньки (обрыва), смещение ее вниз. Снятие слоя материала происходит лишь на небольшом отрезке фронтальной поверхности резания.
  • Фаза № 4. Восстановление исходного состояния. Ступенька довольно быстро «вдавливается» в заготовку. По мере смещения ступеньки вниз снова образуется ровная поверхность резания – начальное состояние резки восстанавливается.

Описанный выше процесс имеет циклический характер.

В процессе резки гидроабразивной струей вода выполняет лишь функцию носителя. Резки обусловлено съемом (скалыванием) определенного количества слоев материала, которое вызвано ударами твердых частиц абразива. Наличие абразива в струе увеличивает его технологические возможности, позволяет резать металл.

Наиболее распространенными абразивами являются кварцевый песок, гранатовый абразив, оливин, карбид кремния и электрокорунд. Широкое применение указанных выше абразивных материалов объясняется их относительной дешевизной, твердостью и высокими режущими свойствами.

Например, гранатовый абразив является твердым и тяжелым; благодаря этому он является фактически устойчивым в течение всего цикла использования. Это дает возможность получать высокое качество среза с определенной глубиной шероховатости, в зависимости от размера зерна и скорости резки.

Как и при любом виде обработки материалов, наиболее благоприятные условия для освоения процесса гидроабразивной резки могут быть достигнуты за счет выбора его оптимальных технологических параметров: давления рабочей жидкости, формы и диаметра отверстия водяного и абразивного сопел, количества абразива, подаваемого расстоянии от сопла к разрезающей поверхности, скорости подачи, качества поверхности резки. Анализ этих параметров требует детального изучения и имеет существенное значение при исследовании данной технологии.

Источник: https://spb-metalloobrabotka.com/rezka-metalla-vodoy-svoimi-rukami/

Pereosnastka.ru

Правила резки металлов под водой

Подводная резка металлов

Категория:

Резание металла

Подводная резка металлов

Разработка и усовершенствование способов огневой резки и электрической сварки металлов иод водой значительно расширили возможности выполнения подводных технических работ — судоремонтных, судоподъемных, аварийно-спасательных, строительных и т. д.

Подводные работы по огневой резке металла отличаются многими специфическими особенностями, часто сопряжены с исключительными трудностями и значительной опасностью для работающих. Разрезаемый металл погружен в водную среду, интенсивно его охлаждающую; это весьма затрудняет достаточный подогрев металла.

Работающий стеснен в своих движениях тяжелым и неудобным водолазным снаряжением и имеет недостаточную устойчивость. Видимость при подводных работах обычно очень плохая. Кроме того, имеются дополнительные трудности, создаваемые течением и волнением воды, значительными глубинами, загрязнениями поверхности металла и др.

Чаще всего приходится резать многослойный металл, причем слои пакета нередко расшатаны взрывом или ударом при аварии и т. и.

https://www.youtube.com/watch?v=78FBX3-l8I8

Простейшим способом является дуговая резка, исследованная автором книги. Дуговую резку под водой обычно выполняют металлическим стальным электродом диаметром 6—7 мм. Для электродных стержней применяется катаная проволока, на которую наносят слой обмазки в количестве около 30% веса стержня, например, следующего состава: 38% мела; 56% железной окалины; 6% портландцемента; 35 частей на 100 частей сухой смеси жидкого стекла (водный раствор).

После просушки и прокалки электродов при температуре 250—300 °С слой обмазки пропитывается водонепроницаемым составом путем погружения в лак или другой подходящий раствор.

Слой обмазки должен обладать достаточной механической прочностью и образовывать при горении дуги на конце электрода выступающий козырек, заметно улучшающий процесс резки.

Расплавленный металл вытекает из полости реза под действием силы тяжести, выдувается струей газов и паров, создаваемой дугой, и удаляется движениями электрода, которые производит резчик, в особенности при резке металла значительных толщин.

Дуговая резка стальным электродом имеет ряд несомненных достоинств, придающих методу практическую ценность: сравнительная простота необходимого оборудования; простота изготовления и недефицитность электродов, для которых пригодна любая стальная проволока подходящего диаметра, имеющаяся под рукой; сравнительно небольшой диаметр электрода, обычно меньше ширины получаемого реза, поэтому электрод можно вводить в полость реза, что позволяет резать металл значительной толщины — до 80 мм и, что особенно важно для подводных работ, резать многослойные пакеты последовательно, слой за слоем.

Читайте также  Резка металлопрофиля своими руками

Для осуществления дуговой резки под водой с приемлемыми скоростями необходим мощный источник тока для питания дуги; обычно применяются токи 500—1000 и. Работа ведется чаще всего

Рис. 1. Дуговая резка металла значительных толщин

Подводные резаки строят с подогревательной частью для различных горючих газов. Наибольший тепловой эффект дает ацетилен, но взрывоопасность и возможность самопроизвольного взрывчатого распада ацетилена при давлении свыше 1,5—2 ати затрудняют его применение в подводных работах, так как даже при небольших речных глубинах часто приходится превышать допустимые пределы давления для ацетилена, чтобы преодолеть противодавление столба воды.

В настоящее время ацетилен для подводной резки совершенно не применяется, чаще всего используется водород. Водород невзрывоопасен, поэтому он позволяет работать на глубинах до 30—40 м и дает длинный факел подогревательного пламени.

Как подогревательный газ, водород имеет и крупные недостатки, к которым относится его малая плотность. Баллон, вмещающий б м3 водорода, по весу содержит его всего 0,54 кг.

Поэтому требуется транспортирование значительного количества баллонов с водородом для обеспечения работ, что часто встречает большие затруднения.

Водородно-кислородное пламя не имеет четко выраженного ядра вследствие отсутствия частиц углерода в пламени, что усложняет регулирование пламени. Водород даёт меньшую калорийность пламени на 1 м3 ио сравнению с углеводородами; это увеличивает его расход и замедляет процесс резки, увеличивая время разогрева при начале каждого реза.

Возможными экономически более выгодными заменителями водорода могут служить различные газообразные углеводороды и их смеси. В связи с трудностью обеспечения подводных работ горючими газами давно встал вопрос о применении для этих работ жидких горючих, в первую очередь бензина.

Первоначальные подводные бензорезы, по аналогии с обычными бензорезами для работ на воздухе, конструировались с предварительным испарением бензина и подачей его паров в камеру смешения подогревательной части бензореза. В подводных бензорезах применялся электрический подогрев бензина.

Эти бензорезы оказались непригодными для производственного применения.

Новый принцип конструирования подводных бензорезов был предложен и реализован в период второй мировой войны. Оказалось возможным отказаться от предварительного испарения бензина и заменить испарение распылением, или пульверизацией.

Рис. 2. Схема подводного зажигания резака:1 — резак; 2 — зажигательная дощечка; 3 — аккумуляторная батарея; 4 — реостат

Бензин распыляется кислородом, и в зону подогревательного пламени подается тончайшая бензиновая пыль, успевающая испариться и сгореть полностью. Это изобретение резко повысило эксплуатационные качества подводного бензореза и выдвинуло бензинокислородную резку, пожалуй, на первое место среди способов подводной газокислородной резки.

https://www.youtube.com/watch?v=e77bSQCPJiU

Современный подводный бензорез имеет следующее устройство. Бензин под значительным давлением поступает в камеру смешения по нескольким спиральным каналам малого сечения и входит в камеру отдельными тонкими струйками. К каждому выходному отверстию бензина тангенциально подходит струйка подогревательного кислорода, распыляющая бензин в камере смешения особого устройства, где происходит испарение и воспламенение распыленного бензина, догорающего в наружном факеле подогревательного пламени.

Бензин подается из напорного бачка, необходимое давление в котором создается инертным негорючим газом, обычно азотом, подаваемым из баллона через редуктор. Нормальная установка, помимо бензореза со шлангами, включает батарею из 6—12 баллонов кислорода, бачок для бензина и баллон с азотом.

Бензорез расходует за 1 ч непрерывной работы 30—60 м3 кислорода, 10—12 кг бензина; расход азота незначителен и идет лишь на создание давления в бензиновом бачке, поэтому одного баллона достаточно на несколько дней работы.

Рис. 3. Подводный бензорез

Преимуществами бензинокислородной резки является большая тепловая мощность подогревательного пламени, сокращение расходов на транспортирование баллонов с водородом, недефицитность горючего — бензина. Бензино-кислородное пламя имеет хорошо очерченное ядро, облегчающее регулирование пламени.

Продукты сгорания пламени содержат много неконденсирующихся газов СО и С02, образующих устойчивый защитный газовый пузырь, что делает излишним подведение дополнительного защитного воздуха или кислорода, упрощает и удешевляет установку и ее эксплуатацию.

Подводная газокислородная резка обеспечивает высокую производительность. Необходимая для резки установка транспортабельна, негромоздка, всегда готова к действию и достаточно надежна в работе. Наряду с указанными достоинствами, подводная газокислородная резка имеет серьезные недостатки, часто заставляющие прибегать к другим процессам.

К этим недостаткам относится, например, довольно заметное реактивное действие струи газов, вытекающих из резака, мешающее работе водолаза-резчика.

Кроме того, размеры мундштука газокислородного резака настолько значительны, что он не может быть введен в полость реза, а потому при разрезке многослойных неплотных пакетов для доступа к нижележащему элементу необходимо вырезать и удалить довольно широкую полосу из вышележащего элемента пакета, что обычно трудно и требует много времени.

Одним из серьезных недостатков подводной газокислородной резки является трудность зажигания и регулирования подогревательного пламени. Операция зажигания и регулирования пламени под водой трудна и редко применяется. Зажигание и регулирование пламени над водой и последующий спуск водолаза требуют много времени, особенно при значительных глубинах.

Реклама:

Подводная электрокислородная резка

Источник: http://pereosnastka.ru/articles/podvodnaya-rezka-metallov