Вакуумирование сварных швов

Содержание

Герметичность сварных швов

Вакуумирование сварных швов

Проверка на герметичность сварных швов необходима при работе изделия под давлением, с жидкотекучими и газообразными средами. Это относится к трубопроводам, емкостям, резервуарам и подобным элементам конструкции. Контролю подвергаются сварные швы роликового и точечного типа. Описывает требования к проверке на герметичность сварных швов ГОСТ 3242-69.

Все виды контроля направлены на определение и устранение некачественных изделий при приемке, их применение определяется точными вычислительными приборами, инструментами технологиями, позволяющими узнать, как проверить сварной шов на герметичность с точностью до микрон.

Испытание герметичности сварного соединения

Определение герметичности шва

«Важно! Проверка готового изделия осуществляется предприятием изготовителем, в процессе эксплуатации, эту процедуру выполняет владелец в указанные сроки в нормативно-технической документации.»

Существует несколько методов проверки, каждый из которых имеет узкую направленность. Важно применять метод, наиболее приемлемый в конкретных условиях.

Методы контроля выбираются в зависимости от условий эксплуатации изделия:

  • химических свойств рабочей среды;
  • физических параметров:
    • давления;
    • температуры;
    • времени эксплуатации.

Проверка герметичности сварных швов предназначена для всех изделий ответственного назначения. Требования к проверке точечного и роликового соединения различаются из-за принципиального различия технологии, формы и назначения. В отличие от всех возможных способов, керосиновая проба сварных швов позволяет провести это исследование в домашних условиях.

  • Роликовая сварка это разновидность точечной, но за счет особой формы электродов, представленных в виде двух роликов, через которые проходит ток, шов получается цельный. Соединение поверхностей происходит методом накладывания друг на друга, поэтому этому виду сварки присущи такие виды брака, как:
    • непровар (в случае недостаточной силы тока, прижимного давления или подачи тока недостаточной продолжительности по времени),
    • недостаточное перекрытие места стыка,
    • выплески металла (наружные и внутренние). Определение причины, а также точного места затрудняется из-за соединения методом нахлестки.

Осложняется недоступным наблюдением шва под нахлесткой, при котором дефекты, а также точное место нахождения становятся трудно определяемыми.

  • Точечный тип сварки представляет собой вид шва, в котором цельный шов выполнен в виде точек, накладывающихся одна на другую. Может выполняться электродуговым, точечным, наплавляемым методами.

В этом случае соединение двух поверхностей проводится стык в стык. Обнаружение брака  упрощается благодаря открытому соединению. Доступная визуализация позволяет выявить плохой сварочный шов, являющийся причиной дефекта. Этому типу сварки присущи следующие виды брака:

    • непровар;
    • прожег;
    • выплеск;
    • сбой в расчетах.

Как исправляются свищи в сварном шве при их выявлении? В большинстве случаев, это место обрубается и сваривается, при невозможности такого подхода, каждое изделия рассматривается комиссионно. Изделие могут переназначить для другого, менее ответственного использования или забраковать полностью.

Гидравлическое испытание сварного шва

Проводится при помощи воды, которая подается под давлением в 1,5-2 раза превышающее рабочее давление сосуда. В течение 10-15 минут проверяется герметичность швов: запотевание, увлажнение и т.д.

Пневматическое испытание шва

Самый экологический способ. Такой дефект как свищ сварного шва может образоваться в процессе эксплуатации, в местах, где происходит критическое напряжение в структуре металла, или же из-за точечной коррозии, а также при некачественном сварном соединении. Проверка пневматикой или вакуумом.

На одну сторону шва наносят мыльный раствор, на противоположную крепят камеру вакуумирования. При наличии трещины воздух поступает в камеру, а место течи определяется по пузырькам. К недостаткам можно отнести небольшую производительность и техническую нерентабельность при проверке больших емкостей.

Пневматическое испытание шва

Проверка сварных швов керосином

Как проверить сварной шов на герметичность керосином? Это вещество выбрано не случайно: оно обладает высокой текучестью, больше чем у воды в несколько раз. Кроме того, проверка сварных швов керосином позволяет определить микроскопические трещины и свищи в домашних условиях, без сложных приспособлений. Проводится он следующим образом: на проверяемую поверхность наносят меловую пленку, которая должна послужить индикатором, а на обратную сторону заливают керосин.

Проверка герметичности керосином

Проверка шва аммиаком

Такой тип проверки также основывается на показаниях индикаторов. Проводится он при помощи сжатого воздуха, в который добавлен раствор аммиака. С противоположной стороны накладывается бумага или чисты медицинский бинт. Веществом–индикатором является фенолфталеин, которым пропитывают материал или 5 % нитрат ртути. При соприкосновении аммиака и индикатором происходит реакция, образующая фиолетовый цвет.

Источник: https://svarkaipayka.ru/tehnologia/drugoe/germetichnost-svarnyih-shvov.html

Пнаэ г-7-019-89 «унифицированная методика контроля основных материалов (полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов аэу. контроль герметичности. газовые и жидкостные методы»

Вакуумирование сварных швов


Государственный комитет СССР по надзору за безопасным ведением работ в атомной энергетикеУНИФИЦИРОВАННАЯ МЕТОДИКА КОНТРОЛЯ ОСНОВНЫХ МАТЕРИАЛОВ (ПОЛУФАБРИКАТОВ), СВАРНЫХ СОЕДИНЕНИЙ ИНАПЛАВКИ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ АЭУКонтроль герметичности.Газовые и жидкостные методы.ПНАЭГ-7-019-89Дата введения 01.07.1990 г.2. КЛАССИФИКАЦИЯ И ВЫБОР СИСТЕМ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ3. АППАРАТУРА И МАТЕРИАЛЫ4. ГАЗОВЫЕ МЕТОДЫ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ4.1. Требования по подготовке поверхности конструкций, подлежащих контролю герметичности газовыми методами4.2. Контроль герметичности гелиевыми течеискателями4.3. Контроль герметичности галоидными течеискателями. Способ галоидного атмосферного щупа4.4. Контроль герметичности пузырьковым методом4.5. Контроль герметичности манометрическим методом (по падению давления)5. ЖИДКОСТНЫЕ МЕТОДЫ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ5.1. Требования по подготовке поверхности изделий, подлежащих контролю жидкостными методами.5.2. Гидравлический способ5.3. Люминесцентно-гидравлический способ5.4. Гидравлический способ с люминесцентным индикаторным покрытием5.5. Способ контроля наливом воды без напора5.6. Способ контроля люминесцентными проникающими жидкостями6. ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ И ПРОИЗВОДСТВЕННОЙ САНИТАРИИ6.1. Требования безопасности при проведении контроля герметичности6.2. Требования безопасности при эксплуатации гелиевых, галоидных течеискателей и люминесцентной аппаратуры6.3. Требования безопасности при работе с баллонами, находящимися под давлением6.4. Требования обращения с сосудами Дьюара и пользование жидким азотом при заливке охлаждаемых ловушек.6.5. Требования безопасности при работе с механическими и пароструйными вакуумными насосами6.6. Требования безопасности при контроле гидравлическими способами6.7. Требования к рабочему месту и помещению при контроле герметичности6.8. Ответственность за соблюдение требований настоящей методики, действующих правил и норм7. АТТЕСТАЦИЯ КОНТРОЛЕРОВ8. ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ ДОКУМЕНТАЦИИПРИЛОЖЕНИЕ 1 (справочное) СООТНОШЕНИЯ РАЗЛИЧНЫХ ЕДИНИЦ ИЗМЕРЕНИЯ ПОТОКА ГАЗАПРИЛОЖЕНИЕ 2 (справочное) ПЕРЕЧЕНЬ ОСНОВНОГО ОБОРУДОВАНИЯ, ПРИБОРОВ И ПРИСПОСОБЛЕНИЙ, ПРИМЕНЯЕМЫХ ПРИ КОНТРОЛЕ ГЕРМЕТИЧНОСТИПРИЛОЖЕНИЕ 3 (справочное) ПЕРЕЧЕНЬ МАТЕРИАЛОВ, ПРИМЕНЯЕМЫХ ПРИ КОНТРОЛЕ ГЕРМЕТИЧНОСТИПРИЛОЖЕНИЕ 4 (обязательное) МЕТОДИКА И ПОРЯДОК ОПРЕДЕЛЕНИЯ ПОРОГОВОЙ ЧУВСТВИТЕЛЬНОСТИ ГЕЛИЕВЫХ ТЕЧЕИСКАТЕЛЕЙПРИЛОЖЕНИЕ 5 (обязательное) МЕТОДИКА И ПОРЯДОК ОПРЕДЕЛЕНИЯ ПОРОГОВОЙ ЧУВСТВИТЕЛЬНОСТИ СПОСОБОВ КОНТРОЛЯ ГЕЛИЕВЫМ ТЕЧЕИСКАТЕЛЕМПРИЛОЖЕНИЕ 6 (справочное) ОЦЕНКА СУММАРНОГО ПОТОКА ГЕЛИЯПРИЛОЖЕНИЕ 7 (справочное) ЗАВИСИМОСТЬ ДАВЛЕНИЯ НАСЫЩЕННЫХ ПАРОВ ХЛАДОНА-12 и ХЛАДОНА-22 ОТ ТЕМПЕРАТУРЫПРИЛОЖЕНИЕ 8 (справочное) СОСТАВ И СПОСОБ ПРИГОТОВЛЕНИЯ ПЕННОГО ИНДИКАТОРАПРИЛОЖЕНИЕ 9 (справочное) СПОСОБ ПРИГОТОВЛЕНИЯ 1 л ВОДНОГО РАСТВОРА АММОНИЕВОЙ СОЛИ ФЛУОРЕСЦЕИНА С КОНЦЕНТРАЦИЕЙ 0,1%ПРИЛОЖЕНИЕ 10 (рекомендуемое) СПОСОБ ОБЕСЦВЕЧИВАНИЯ ЛЮМИНЕСЦЕНТНОГО РАСТВОРА ПРИ ПОМОЩИ ЖИДКОЙ ФАЗЫ СУСПЕНЗИИ ХЛОРНОЙ ИЗВЕСТИ И СПОСОБ ЕЕ ПРИГОТОВЛЕНИЯПРИЛОЖЕНИЕ 11 (справочное) СОСТАВ И СПОСОБЫ ПРИГОТОВЛЕНИЯ ИНДИКАТОРНОГО ПОКРЫТИЯ (МАССЫ И ЛЕНТЫ)ПРИЛОЖЕНИЕ 12 (обязательное) СОСТАВ И СПОСОБЫ ПРИГОТОВЛЕНИЯ ПРОНИКАЮЩЕЙ ЖИДКОСТИ И АДСОРБИРУЮЩЕГО ПОКРЫТИЯПРИЛОЖЕНИЕ 13 (обязательное) ТРЕБОВАНИЯ К ПОМЕЩЕНИЮ ДЛЯ КОНТРОЛЯ ГЕРМЕТИЧНОСТИПРИЛОЖЕНИЕ 14 (рекомендуемое) Форма записи результатов контроляПРИЛОЖЕНИЕ 15 ФОРМА ЗАКЛЮЧЕНИЯ ПО РЕЗУЛЬТАТАМ КОНТРОЛЯ

1.1. Контроль герметичности конструкций и их узлов проводится в целях выявления течей, обусловленных наличием сквозных трещин, непроваров, прожогов и т.п. в сварных соединениях и металлических материалах.

1.2. Контроль герметичности основан на применении пробных веществ и регистрации их проникновения через течи в конструкции при помощи различных приборов — течеискателей и других средств регистрации пробного вещества.

1.3. В зависимости от свойств пробного вещества и принципа его регистрации контроль проводится газовыми или жидкостными методами, каждый из которых включает в себя ряд способов, различающихся технологией реализации данного принципа регистрации пробного вещества. При этом в зависимости от применяемого способа при контроле герметичности определяется место расположения течи или суммарное натекание (степень негерметичности). Перечень применяемых методов и способов контроля приведен в Таб.1

1.4. Величина течи или суммарного натекания оценивается потоком воздуха через течь или все течи, имеющиеся в изделии, при нормальных условиях из атмосферы в вакуум. Соотношения единиц измерения потока приведены в справочном Приложение 1.

Читайте также  Формы разделки шва под сварку

1.5. Под системой контроля понимается сочетание определенных способа и режимов контроля и способа подготовки изделия к контролю.

1.6. Пороговая чувствительность системы контроля характеризуется величиной минимальных выявляемых течей или суммарного натекания.

2. КЛАССИФИКАЦИЯ И ВЫБОР СИСТЕМ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ

2.1. Все системы контроля по чувствительности разделены на пять классов герметичности, приведенных в табл. 2.

2.2. Класс герметичности устанавливается проектной (конструкторской) организацией в соответствии с требованиями действующих Правил контроля в зависимости от назначения, условий работы изделия и выполнимости способов контроля и подготовки, отнесенных к данному классу, и указывается в конструкторской документации.

2.3. Выбор конкретной системы контроля определяется назначенным классом герметичности, конструкционными и технологическими особенностями изделия, а также технико-экономическими показателями контроля.

2.4. В соответствии с назначенным классом герметичности контроль проводится по технологии технологических карт контроля, в которых указаны конкретные способы контроля и подготовки изделия под контроль. В случае отступлений от требований настоящей методики документы должны быть согласованы с головной отраслевой материаловедческой организацией.

3. АППАРАТУРА И МАТЕРИАЛЫ

3.1. При испытании герметичности оборудование, приборы и материалы должны выбираться в соответствии со справочными приложениями 2 и 3. Допускается применение не указанных в приложениях отечественного и импортного оборудования, приборов и материалов, удовлетворяющих требованиям настоящего документа.

3.2. Параметры и технические характеристики оборудования, приборов и материалов, применяемых при контроле герметичности, должны соответствовать паспортным значениям, государственным стандартам и техническим условиям.

3.3. Метрологической поверке подвергаются приборы, в паспортах которых указаны объем и характер поверок. Поверки проводятся органами Госстандарта на соответствующих предприятиях.

Периодичность поверок проводится в соответствии с требованиями паспорта на прибор.

3.4. Течеискатели независимо от выбранного способа контроля должны быть настроены на оптимальную чувствительность в соответствии с указаниями технического описания и инструкции по их эксплуатации.

4. ГАЗОВЫЕ МЕТОДЫ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ

4.1.1. Если на поверхность изделия, сборочной единицы наносится защитное покрытие, контроль герметичности следует проводить перед указанной операцией.

Примечание. В случае технической невозможности допускается проводить контроль герметичности после нанесения защитных покрытий, что должно оговариваться в производственно-технической документации (ПТД).

4.1.2. Поверхность изделий, сборочных единиц, сварных соединений изделий, подлежащих проверке на герметичность, не должна иметь следов ржавчины, масла, эмульсии и других загрязнений.

4.1.3. Органические загрязнения с доступных участков поверхности изделия следует удалять промывкой органическими растворителями с последующим кантованием изделия или барботированием залитого растворителя. Объем заливаемого растворителя должен быть не менее 100% свободного объема изделия.

4.1.4. В качестве очищающих жидкостей следует использовать спирт, ацетон, уайт-спирит, бензин, хладон-113 или другие органические растворители, обеспечивающие качественное удаление органических загрязнений.

4.1.5. После очистки растворитель следует слить и полость изделия продуть сухим чистым воздухом до полного удаления запаха растворителя.

4.1.6. Качество очистки должно быть проконтролировано протиркой контролируемой поверхности чистой белой безворсовой тканью с последующим ее осмотром. Отсутствие загрязнений на ткани свидетельствует о качественной очистке поверхности.

4.1.7. При соответствующем указании в техническом процессе качество очистки должно быть проконтролировано осмотром участка поверхности изделия или сварного соединения в лучах ультрафиолетового света, а при недопустимости поверхности для осмотра в лучах ультрафиолетового света — куска бязи после протирки им поверхности.

Отсутствие светящихся пятен на контролируемой поверхности или куске бязи при освещении их ультрафиолетовым светом свидетельствует о качественной очистке поверхности.

4.1.8. Окончательную операцию подготовки — осушку поверхности изделий и полостей возможных сквозных дефектов от влаги и других жидких сред — следует проводить непосредственно перед контролем герметичности. После осушки в целях сохранения чистоты изделий работы следует проводить в чистой спецодежде (халате или спецовке) и в перчатках из бельевой ткани.

4.1.9. В качестве нагревательных средств следует использовать электропечи, индукторы, калориферы, установки, стенды для пропаривания и т.п. Для нагрева можно использовать метод электросопротивления с применением переменного или постоянного тока.

4.1.10. При осуществлении осушки без вакуумирования длительность выдержки при требуемой температуре должна быть не менее 5 мин. Температура определяется заданным классом герметичности.

Источник: https://files.stroyinf.ru/Data1/53/53097/

Сварка алюминия при изготовлении вакуумных камер

Вакуумирование сварных швов

Технологии сварки алюминия хорошо отработаны и документированы [90, 91, 92]. Они несколько отличаются от технологий сварки коррозионностойкой стали, но не являются намного более сложными.

цель изготовления вакуумных камер заключается в том, чтобы получить сварные швы, свободные от пористости и трещин, которые могут вызывать пути натекания или фактические течи. Соображения для конструкционных видов применения, в частности прочность, цвет и коррозионная стойкость, имеют вторичное значение.

Сварку алюминия не следует рассматривать в качестве искусства, поскольку механизмы, влияющие на качество сварки, следуют хорошо понимаемым принципам.

Предотвращение пористости и дефектов

Водород является главной причиной пористости в сварных швах. Значительно большее количество его может растворяться в расплавленном металле, чем может оставаться растворенным, когда металл охлаждается и отвердевает. По мере выделения водорода из раствора он образует пустоты, соединяющиеся между собой и образующие пути течи. Коэффициент растворимости водорода в расплавленном/твердом металле для алюминия в 36 раз выше, чем у железа.

В результате этого сварные швы алюминия становятся значительно более чувствительными к этому источнику пористости, чем сварочные швы коррозионностойкой стали [93]. Главными источниками водорода являются влага, углеводороды и гидроксиды на поверхности и в окружающей атмосфере.

К счастью, относительно простые и практические меры способны сократить эти воздействия в достаточной степени для того, чтобы получить хорошие сварочные швы для сверхвысокого вакуума.

Постоянно следует надевать перчатки, так как кожные выделения вызывают значительное загрязнение. Масла и отпечатки пальцев можно удалять с обрабатываемой детали и присадочного прутка этанолом или ацетоном.

Оксиды захватывают влагу (главный источник водорода) и имеют высокие температуры плавления, вызывающие неполное расплавление. Они быстро разрастаются на открытых поверхностях алюминия и должны быть удалены в течение 4 ч после сварки. Поверхности на расстоянии 1 см от стыка должны шабриться инструментом с твердой кромкой [94].

Проволочные щетки могут вызвать попадание загрязнений в мягкую поверхность, и их применения следует избегать. Поскольку присадочный пруток представляет собой большую часть металла в стыке, он является основным источником потенциального загрязнения и достоин специального ухода при закупке, упаковке, хранении и транспортировке — в особенности, в виде проволоки.

Присадочный пруток можно зачищать несколькими проходами Скоч-Брайт® непосредственно до сварки.

Защитный газ должен иметь сверхвысокую чистоту (99,999%) и пропускаться с целью промывки через наконечник в течение 20 секунд до инициации дуги для того, чтобы обеспечить содержание влаги ниже 10 частей на миллион (желательно менее 3 частей на миллион) [95].

Относительная влажность в зоне сварки должна быть меньше 75% и желательно составлять менее 50%, для чего может потребоваться работать в кондиционированным помещении. Быстрая скорость сварки, как было доказано, уменьшает пористость [96].

Необходимо приложить усилия к тому, чтобы обеспечить отсутствие утечек в линиях инертного газа, так как такие течи могут быть непреднамеренным источником скопления влаги.

Где только возможно, следует использовать дуговую сварку вольфрамовым электродом переменного тока в аргоне, поскольку в течение положительных полуциклов этой сварки защитный газ ионизируется и ускоряется в направлении обрабатываемой детали, обеспечивая очищающее действие посредством распыления-травления, благодаря которому удаляется остаточное загрязнение.

Предотвращение дефектов в виде трещин

Трещины обычно появляются, когда сплав затвердевает в рамках широкого температурного диапазона (диапазон затвердевания). Пока стык охлаждается в этом диапазоне, валик металла имеет кашеобразный вид и легко ломается под действием небольших термических напряжений.

Этот процесс частично облегчается тем, что сплавы содержат некоторую степень эвтектики, которая продолжает течь при низкотемпературном пределе диапазона затвердевания и имеет тенденцию заполнять трещины.

Они затем затвердевают без трещин на протяжении узкого температурного диапазона [97].

К несчастью, составы сплава, обеспечивающие хорошие структурные свойства, часто также обладают широкими диапазонами затвердевания.

Рис. 13. Зависимость появления трещин алюминия от содержания различных легирующих элементов (источник: J. D. Dudasand F. R/ Collins, Preventing Weld Crack in High-Strenght Aluminum Alloys, Welding Journal, 1966)

Чувствительность трещин сварки при соединении материалов можно значительно уменьшить подбором присадочных сплавов, являющихся менее подверженными растрескиванию (т. е. с более узким диапазоном затвердевания и/или высоким содержанием эвтектики) даже при частичном разбавлении базовым металлическим сплавом.

Большинство трещин возникает рядом с центром валика, который охлаждается последним. К счастью, эта зона является наименее разбавленной базовым металлом. На рис. 13 показано воздействие различных составов сплава на чувствительность трещин.

Следует отметить, что у сплавов AlMg2Si (серия 6000) сопротивление образованию трещин усиливается за счет увеличения либо содержания Mg, либо Si.

Необходимо избегать присадочных материалов, затвердевающих при значительно более высоких температурах, чем базовый металл, поскольку силы температурного расширения будут вызывать растрескивание на расплавленной кромке валика (98]. Рекомендуемые присадочные материалы для различных алюминиевых сплавов приведены в табл. 7. Требуется избегать сочетаний, для которых присадочный материал не указывается.

Ряд других технологий помогает минимизировать трещины. Предпочтение отдается соединениям с угловым швом и соединениям с V-образной канавкой, поскольку они позволяют максимально заполнить соединение присадочным материалом, нечувствительным к трещинам, и минимизировать его разбавление чувствительным к трещинам базовым металлом.

Читайте также  Проковка сварных швов

Валик сварного шва должен быть немного выпуклым, чтобы облегчать доступ расплавленного металла для заживления возникающих трещин. Если валику дается возможность принять плоское или выпуклое состояние, поверхностное натяжение может помешать потоку.

Это может быть осуществлено путем наклона электрода на 10-20° и использования силы дуги для «установки преграды» расплавленному валику [99]. Следует препятствовать образованию кратера при завершении шва при помощи любой из ряда сложившихся технологий. В особо проблематичных швах с той и с другой стороны соединения могут вырезаться канавки (рис. 14).

Эти канавки уменьшают растечки тепла от валика и минимизируют тепловое расширение остальной части конструкции. Они также отпускают напряжения, уменьшая жесткость и допуская некоторое механическое отклонение.

Конструкция сварных соединений

Кроме ряда специальных соображений, конструкция сварных соединений алюминиевых деталей в основном такая же, как для коррозионностойкой стали (рис. 14). Простые, квадратные стыковые сварные швы (касающиеся) подходят для толщины листа приблизительно до 6 мм (0,25 дюйма) и являются особенно желательными, потому что они легко зачищаются шабрением.

В более толстых стыках должны использоваться V-образные канавки (60-90°) или угловые сварные швы для обеспечения проникновения дуги и минимизации разбавления присадочного металла базовым металлом. Зазор между свариваемыми кромками 3 мм (1/8 дюйма), 1,5-2 мм от дна способствует обеспечению полного проникновения теплоты (провариваемо- сти). Желательно, чтобы обе стороны стыка были обработаны на станке до одной и той же толщины для уравновешенного нагревания, благодаря чему минимизируется напряжение и искажение.

Примеры стыков между горловиной с тонким фланцем и толстой стенкой камеры показаны на рис. 15. Прихваточные швы можно сделать после сборки и фиксации стыка. Они являются существенными для предотвращения искажений, которые создаются во время сварки от закрытия зазора в вершине разделки между свариваемыми кромками (когда она используется) до того, как шов будет завершен.

Размер прихваточного шва может быть выбран в соответствии с предпочтением оператора, поскольку во время окончательного шва они должны быть полностью переплавлены и включены в шов [1001. Швы могут пересекаться крест- накрест, поскольку это не влияет на металлургическую прочность в алюминии, как это имеет место в других металлах [101].

Рис. 14. Виды сварных швов

Рис. 15. Рекомендуемая конструкция сварных соединений для алюминиевых фланцев

По ту и другую сторону стыка, где на состояние термообработки оказывается влияние и прочность уменьшается перманентно, имеет место «находящаяся под влиянием теплоты зона» величиной приблизительно 25 мм. Это важно при сварке сильно закаленных фланцев, но может ослабляться путем использования отвода тепла на поверхности фланца (в частности на таком, как сопрягаемый фланец) для поддержания температуры на низком уровне.

Если сварочный шов требуется с обеих сторон стыка по структурным соображениям, одна сторона должна свариваться только короткими участками вразброс для того, чтобы предотвратить захват газа, который вызывает фактические течи. После сварки усадка будет приблизительно в два раза больше усадки коррозионностойкой стали (приблизительно 6% ширины шва).

Это может вызвать искажение и должно учитываться сваркой элементов в одно целое в симметрическую последовательность и механической обработкой после сварки, если требуются строгие допуски по размерам.

Источник: http://VacuumPro.ru/jelementy/konstrukcii-vakuumnykh-sistem-na-osnove-alyuminiya/svarka-alyuminiya-pri-izgotovlenii-vakuumnykh-kamer

Вакуумный метод контроля сварных соединений — Справочник металлиста

Вакуумирование сварных швов

Проверка сварочных соединений — обязательный этап любых сварочных работ. Благодаря тщательному контролю можно выявить явные и скрытые дефекты, которые в дальнейшем повлияют на качество и долговечность всей металлической конструкции. Конечно, можно оценить качество сварного шваневооруженным взглядом, но это лишь один из методов.

С помощью визуального контроля вы не сможете обнаружить внутренние трещины и поры. Поэтому важно знать дополнительные способы контроля качества. На крупных производствах эту работу выполняет контролер сварочных работ, но на меленьком заводе эта обязанность часто ложится на плечи сварщика. В этой статье мы расскажем, как проверить швы и какие есть виды контроля качества помимо визуального осмотра.

Способы контроля качества сварного шва

Существуют разнообразные виды и средства технического контроля, все они имеют свои достоинства и недостатки, особенности и нюансы. Но несмотря на различия все они призваны, чтобы устроить швам испытание на прочность и долговечность. Качество сварных соединений во многом зависит от сварщика и используемых комплектующих, так что итог контроля можно предсказать. Но мы все равно рекомендуем проводить контроль качества, чтобы быть уверенным, что изделия прослужат долго.

Качество сварных соединений можно узнать путем визуального осмотра (пожалуй, самый распространенный метод), ультразвукового, магнитного, капиллярного и радиационного (радиографического) контроля, также осуществляется контроль сварных швов на проницаемость.

Есть и другие методы контроля сварных швов, но мы в этой статье перечислим самые распространенные и простые в применении. Рекомендуем выполнять пооперационный контроль качества, т.е. сначала осмотреть шов, затем провести капиллярный контроль и так далее.

Впрочем, обо всем по порядку.

Визуальный контроль

Начнем с визуального контроля. Это наиболее простой и быстрый способ узнать качество сварных швов. Вам не понадобятся специальные приборы или жидкости, достаточно вашей внимательности. Тщательно осмотрите сварное соединение: не должно быть видимых дефектов вроде трещин и сколов, шов должен иметь одну ширину и высоту на всех участках.

 Внешний контроль сварочных швов позволяет также проверить наличие или отсутствие непроваров, наплывов, неравномерных складок шва. Все это дефекты, обнаружив которые можно смело говорить о низком качестве соединения.

Для более эффективного контроля качества сварных швов мы рекомендуем использовать мощную лампу и лупу, также нелишним будет рулетка или линейка, штангенциркуль.

С помощью таких простых приспособлений вы сможете замерить размеры дефектов и понять, что с ними делать в дальнейшем.

Конечно, с помощью такого метода вы не сможете выполнить полноценный контроль сварных соединений трубопроводов, сварных соединений газопроводов или иных ответственных конструкций, но визуальный осмотр станет первой операцией, вслед за которой можно применить остальные методы контроля.

Капиллярный контроль

Методы контроля качества сварных соединений включают также испытания сварного шва. Для этого используется капиллярный метод. Его суть крайне проста: для контроля используются специальные жидкости, которые способны проникать в мельчайшие поры и трещинки, называемые капиллярами.

https://www.youtube.com/watch?v=ZbnEIr5ITFc

С помощью капиллярного операционного контроля можно проверить качество любого металла, с любым составом и формой. Зачастую такой метод используется, когда нужно узнать наличие скрытых дефектов невидимых для глаз, но нет бюджета, поскольку капиллярный контроль очень прост в применении и не требует наличия дорогостоящего оборудования.

Капиллярная оценка качества сварных соединений выполняется с помощью жидкостей, называемых пенетрантами (от английского слова «penetrant», что значит «проникающая жидкость»). Такие жидкости обладают незначительным поверхностным натяжением, отчего легко проникают в мелкие капилляры и при этом остаются видимы для глаз. По сути, пенетранты заполняют полости и окрашивают дефекты, тем самым делая их видимыми.

Сейчас можно найти множество рецептов приготовления пенетранта, каждый из которых будет обладать своими свойствами и особенностями. Можно приготовить пенетрант на основе воды или любой другой органической жидкости (скипидара, бензола, также сюда относится довольно популярная проверка сварных швов керосином. Такие пенетранты очень эффективны и чувствительны к малейшим дефектам. Они уверенно занимают одну из лидирующих позиций среди методов по контролю качества.

Контроль на герметичность сварных швов

На жидкостях не заканчиваются испытания сварных швов. Их также нужно проверить на герметичность. Метод проверки на герметичность имеет множество названий: течеискание, пузырьковый метод контроля, пневмоиспытание, гидроиспытание и многие другие. Но вне зависимости от названия суть их остается неизменна: обнаружение сквозных дефектов, ухудшающих герметичные показатели сварного соединения.


Проверка сварочных швов на герметичность выполняется с помощью газов (кислорода или азота), различных жидкостей (например, воды). Метод во многом схож с капиллярным, но здесь газ или жидкость дополнительно подаются под большим давлением, под которым они как раз и распределяются в дефектные полости и выходят наружу. У этого метода есть своя классификация.

Бывает пневматический и гидравлический контроль, также швы можно проверить вакуумно или с помощью обдува воздухом, это подкатегории пневматического контроля. Но обо всем поговорим подробнее.

Начнем с пневматического метода контроля качества швов. Он подразумевает использование газа или воздуха, который направляется на соединение под давлением. При этом шов смазывается мыльным раствором.

Также есть разновидность пневматического контроля, называемая вакуумным контролем, когда с помощью специального оборудования создается искусственный вакуум, в него помещается деталь, а шов также предварительно смачивают мыльным раствором.

В местах со сквозными трещинами будут образовываться пузыри, указывающие на местонахождение дефекта.

При приготовлении мыльного раствора используется один кусок мыла на литр воды. Если предстоит работа при низких температурах (на улице зимой), то более половины воды рекомендуется заменить на спирт. Также рекомендуем подключить манометр, с помощью которого вы сможете контролировать показатель давления и сможете заметить, как оно будет падать при обнаружении дефектов. Также нелишним будет использование предохранительного клапана, чтобы соблюсти технику безопасности.

Самая простейшая форма пневматического контроля — погружение детали в воду, без смазывания швов мыльным раствором и использования давления. Если у шва есть дефекты, то они дадут о себе знать, когда небольшие пузырьки воздуха начнут появляться из сварного соединения. Этот способ проверки качества можно назвать полевым, но он достаточно эффективный.

Также есть еще одна разновидность пневматического контроля, называемая контроль качества сварных швов и соединений с помощью аммиака. Аммиак подается вместо газа или воздуха, а швы предварительно покрывают специальной бумажной лентой. Аммиак проходит через шов и если имеются дефекты, то на ленте появляются красные пятна.

Читайте также  Чем обрабатывать сварочный шов нержавейки?

Источник: https://ssk2121.com/vakuumnyy-metod-kontrolya-svarnyh-soedineniy/

Установка для контроля герметичности конструкций вакуумно-пузырьковым способом УКГВПС с подсветкой (в компл с рамками для стыковых, угловых и нахлесточный швов)

Вакуумирование сварных швов

Установка контроля герметичности конструкций вакуумно-пузырьковым способом, УКГВПС, предназначена для выявления проницаемости сварных швов, обусловленных наличием дефектов типа сквозных трещин, непроваров при сооружении резервуаров, газгольдеров, тоннелей.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Максимальное разрежение вакуумного насоса, атм. -1,0
Максимальное разрежение в вакуумной камере, атм. -0,8
Рабочее разрежение в вакуумной камере, атм. -0,6
Питание вакуумного насоса — однофазная сеть 220В 50Гц
Длина вакуумного шланга, м 5
Длина кабеля электроудлинителя, м 30
Масса блока вакуумного насоса, кг 8,4
Масса вакуумной камеры для прямого шва 3,8
Масса вакуумной камеры для нахлесточного шва, м 3,8
Масса вакуумной камеры для углового шва, кг 3,2
Масса вакуумного шланга, кг. 1,3
Масса электроудлинителя, кг. 6
Температура окружающей среды -200  +500 С

Комплект поставки

Блок вакуумного насоса 1
Вакуумный шланг, 5м 1
Вакуумная камера для прямого шва с подсветкой 1
Вакуумная камера для нахлесточного шва с подсветкой 1
Вакуумная камера для углового шва с подсветкой 1
Электроудлинитель на  катушке, L=30м 1
Масло вакуумное 1
Зарядное устройство для аккумуляторов подсветки 1
Кофр для блока насоса и вакуумного шланга 1
Кофр для вакуумных камер 1
Паспорт и руководство по эксплуатации  вакуумной установки 1
Паспорт на вакуумный насос 1

*По заявке вакуумная установка комплектуется вакуумной камерой для проверки уторного шва.

* Тип и количество поставляемых вакуумных камер, а также общая длина шланга могут быть изменены, исходя из заявки Заказчика.

БЛОК ВАКУУМНОГО НАСОСА

Состоит из основания, вакуумного насоса, двух воздушных фильтров, регулировочного клапана и быстросъемного вакуумного разъема                             

ВАКУУМНАЯ КАМЕРА

Состоит из прозрачного основания  с уплотнением из специальной пористой резины, трехпроходного шарового крана с вакууметром и быстросъемным вакуумным разъемом. На основании закреплена ручка, светодиодная подсветка, аккумулятор, кнопка включения подсветки, разъем подзарядки аккумулятора.  Блок насоса соединяется с вакуумной камерой прилагаемым вакуумным шлангом, с  быстросъемными вакуумными разъемами.

Установка для контроля герметичности конструкций вакуумно-пузырьковым способом УКГВПС с подсветкой (в компл с рамками для стыковых, угловых и нахлесточный швов) Установка для контроля герметичности конструкций вакуумно-пузырьковым способом УКГВПС цена по запросу /writable/images/784.

jpg /writable/images/785.jpg Установка контроля герметичности конструкций вакуумно-пузырьковым способом, УКГВПС, предназначена для выявления проницаемости сварных швов, обусловленных наличием дефектов типа сквозных трещин, непроваров при сооружении резервуаров, газгольдеров, тоннелей.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Максимальное разрежение вакуумного насоса, атм. -1,0
Максимальное разрежение в вакуумной камере, атм. -0,8
Рабочее разрежение в вакуумной камере, атм. -0,6
Питание вакуумного насоса — однофазная сеть 220В 50Гц
Длина вакуумного шланга, м 5
Длина кабеля электроудлинителя, м 30
Масса блока вакуумного насоса, кг 8,4
Масса вакуумной камеры для прямого шва 3,8
Масса вакуумной камеры для нахлесточного шва, м 3,8
Масса вакуумной камеры для углового шва, кг 3,2
Масса вакуумного шланга, кг. 1,3
Масса электроудлинителя, кг. 6
Температура окружающей среды -200  +500 С

Комплект поставки

Блок вакуумного насоса 1
Вакуумный шланг, 5м 1
Вакуумная камера для прямого шва с подсветкой 1
Вакуумная камера для нахлесточного шва с подсветкой 1
Вакуумная камера для углового шва с подсветкой 1
Электроудлинитель на  катушке, L=30м 1
Масло вакуумное 1
Зарядное устройство для аккумуляторов подсветки 1
Кофр для блока насоса и вакуумного шланга 1
Кофр для вакуумных камер 1
Паспорт и руководство по эксплуатации  вакуумной установки 1
Паспорт на вакуумный насос 1

*По заявке вакуумная установка комплектуется вакуумной камерой для проверки уторного шва.

* Тип и количество поставляемых вакуумных камер, а также общая длина шланга могут быть изменены, исходя из заявки Заказчика.

БЛОК ВАКУУМНОГО НАСОСА

Состоит из основания, вакуумного насоса, двух воздушных фильтров, регулировочного клапана и быстросъемного вакуумного разъема                             

ВАКУУМНАЯ КАМЕРА

Состоит из прозрачного основания  с уплотнением из специальной пористой резины, трехпроходного шарового крана с вакууметром и быстросъемным вакуумным разъемом. На основании закреплена ручка, светодиодная подсветка, аккумулятор, кнопка включения подсветки, разъем подзарядки аккумулятора.  Блок насоса соединяется с вакуумной камерой прилагаемым вакуумным шлангом, с  быстросъемными вакуумными разъемами.

]]> blagvest-nk@yandex.ru

  • Каталог
  • Прайс-лист
  • Эридан-сервис
  • Услуги
  • Контакты

Контакты © 2008-2012 ООО «Благовест» — Уфа.
Все права защищены
Каталог Прайс-лист Эридан-сервис Услуги

Все поля обязательны для заполнения.

Имя
Телефон

   >   

Сопутствующие товары:

К сожалению, по вашему запросу ничего не найдено

Вакуумирование сварных швов
   руб.

Сопутствующие товары:

>

Новости архив новостей

Вакуумирование сварных швов

Новинки все товары

Вакуумирование сварных швов
right

Источник: http://www.blagovestnk.ru/catalog/6/178/

Рамки вакуумные для вакуумно-пузырькового метода течеискания

Вакуумирование сварных швов

Вакуумные рамки предназначены для вакуумно-пузырькового метода течеискания. Вакуумные рамки разработаны для поиска дефектов — сквозных течей в сварных соединениях в соответствии с ГОСТ 24054-80, ГОСТ Р 51780-2001, ПНАЭ Г-7-019-89, ПНАЭ Г-7-008-89, другими стандартами и отраслевыми требованиями.

Запатентованная технология производства

Технология изготовления вакуумных камер запатентована и включает в себя ряд передовых решений. В первую очередь – это отсутствие клеевого слоя в местах прилегания экрана к профилю уплотнителя. Сам профиль представляет собой цельную конструкцию – замкнутый контур без клеевых соединений.

Нет клеевого стыка – нечему рваться при регулярных нагрузках.

Преимущества

  1. Простота выполнения контроля.
  2. Контроль объектов на этапе сборки конструкции.
  3. Контроль герметичности крупногабаритных объектов.
  4. Контроль объектов с односторонним доступом к поверхности.
  5. Вакуумными рамками можно контролировать объекты, в которых нельзя создать минимально необходимое избыточное давление пробного газа.

  6. Минимальные требования к подготовке поверхности объекта контроля, отсутствие дорогостоящих расходных материалов.
  7. Широкий диапазон рабочих температур*.
  8. Время проведения контроля 1 метра сварного стыка — не более 30 секунд.

  9. Пороговая чувствительность способа при контроле вакуумными рамками сопоставима с чувствительностью таких способов, как: способ гелиевого щупа, способ обдува гелием, пневматическим надувом воздуха и способа с использованием люминесцентных проникающих жидкостей.

* — Контроль на герметичность с использованием вакуумно-пузырьковых рамок может выполняться при температурах, соответствующих точкам замерзания / испарения используемых пено-плёночных индикаторов.

Типы вакуумных рамок* (Вид сварного шва / Название рамки):

  • Плоский стык / Плоская
  • Нахлёстный / Нахлёст
  • Уторный / Внутренний угол
  • 3-х гранный внутренний угол / Треугольник
  • Сферический / Круг
  • Внешний угол 90 градусов

* — Тип вакуумной камеры (рамки) и её размеры согласуются с менеджером при заказе

Физические основы метода

Принцип пузырькового метода контроля основывается на локальном выявлении течей в изделиях по образованию пузырьков газа в среде индикатора. Метод используют для испытаний на герметичность резервуаров, особенно в местах соединений деталей конструкции, а также для обнаружения протечек в газовых или гидравлических системах, работающих под давлением.

Контроль проводится с использованием пеноплёночного индикатора. Поверхность исследуемого объекта после предварительной очистки покрывается специальным пенообразующим составом. После этого к поверхности прикладывается вакуумная камера (рамка) внутри которой при помощи вакуумного насоса создаётся разрежение.

Во время работы насоса возникает разница давлений и контрольный газ (в нашем случае – воздух), проникая через полость микродефекта, механически воздействует на пеноплёночный индикатор и деформирует его, образуя пузырьки и пену. Дефект локализуется при визуальном осмотре через окно вакуумной камеры (рамки).

Эксплуатация вакуумно-пузырьковых рамок

При проведении работ по течеисканию, вакуумная рамка подключается к запорному клапану / ручке и накладывается на подлежащую контролю область исследуемого объекта. Поверхность объекта контроля предварительно смачивается пенообразующим составом.

Схема вакуум-камеры (рамки) для контроля герметичности
(1) — резиновые уплотнения, (2) — корпус камеры, (3) — окно, (4) — кран, (5) — манометр,
(6) — течь в сварном соединении, (7) — пенообразующий состав.

Вакуумная рамка размещается на поверхности контролируемого изделия с максимальным прилеганием к рабочей зоне. Перед началом работ необходимо убедиться в герметичности соединений между рамкой и поверхностью объекта контроля.

При открытии запорного клапана из полости, образованной поверхностью металла, уплотнителем и окном, откачивается воздух с максимальным разряжением до — 0,08 МПа, необходимым для обнаружения сквозной трещины (несплошности) с натеканием воздуха 10-5 м3/Па*сек, что соответствует IV классу герметичности согласно ПНАЭ Г-7-019-89.

Время визуального контроля состояния пенообразующего состава, нанесенного на поверхность сварного шва, не должно быть менее 2-х минут! Для более полного контакта рамок с неплоской поверхностью металла допускается продольный изгиб экрана не более 50 мм.

Ограничения

Вакуумные рамки не применяются для контроля необработанных электросварных швов, т.к. бугристая и неоднородная поверхность таких швов может препятствовать созданию герметичного соединения между рамкой и поверхностью объекта контроля.

Техническое обслуживание и хранение

Для очистки и мытья экрана и уплотнителя используется спирт или бензин БР-1 «Калоша» по ГОСТ 443-76 (либо его аналог – нефтяной растворитель Нефрас С2-80/120, ТУ 38.401-67-108-92), мягкие моющие средства или влажные салфетки. Контакт экрана и уплотнителя с органическими растворителями не допускается.

При длительном хранении избегайте деформации уплотнительного профиля и попадания прямых солнечных лучей. Температура хранения +5°С / +25°С.

Источник: https://xrs.ru/ramki-vakuumnye-detail